

CONTRIBUTION AND ACKNOWLEDGEMENTS

Writing and Development

• Isaac Frimpong Arthur (BSc), Africa Fish Welfare (AFIWEL) Fellow, OHDI

Technical Review and Validation

- Lawrence Armah Ahiah (PhD), Fisheries Commission
- Charles Narteh Boateng (PhD), University of Environment and Sustainable Development
- Samuel Addo (PhD), University of Ghana
- Prince Ofori-Darkwah (PhD), Kwame Nkrumah University of Science and Technology
- Kwabena Derick Owusu (BSc, MSc, MSc, MSc), Greenfield Aquafarm & Research

Funding Support: Effective Altruism (EA) Funds

COPYRIGHT STATEMENT

Copyright © One Health and Development Initiative (OHDI), June 2025

All rights reserved. No part of this document may be reproduced or used in any manner without the prior written permission of the copyright owner, except for the use of cited brief quotations.

To request permissions, contact <u>afiwelprogram@onehealthdev.org</u>

Suggested citation: Frimpong I., (2025). Fish Welfare Training Guide for Ghana; One health Development Initiative (OHDI), June 2025.

PREFACE

Fish welfare is increasingly recognized as a core component of sustainable and ethical aquaculture. Across Africa, where aquaculture plays a vital role in food security, livelihoods, and economic development, there is growing urgency to embed welfare principles into production systems, policy frameworks, and capacity-building efforts.

The Africa Fish and Aquaculture Welfare (AFIWEL) Program, implemented by One Health and Development Initiative (OHDI), was established to address this need. The AFIWEL program is a pan-African initiative that is supporting ethical, welfare-driven, safe and sustainable aquatic life and production systems across Africa. One of its flagship initiatives is the AFIWEL Fellowship which engages select fisheries and aquaculture professionals and experts in capacity building, community building and field implementation program to advance fish and aquaculture welfare practices and integrate them into existing sustainable aquaculture frameworks. Through this pan-African fellowship model, the program supports professionals across the continent to lead transformative action in fish and aquaculture welfare through education, stakeholder engagement, and policy advocacy.

This Fish Welfare Training Guide is one of several developed by AFIWEL Fellows. This particular guide has been tailored to the specific aquaculture realities of Ghana, providing practical, evidence-based knowledge and tools for fish farmers, aquaculture workers, extension officers, animal health professionals, and institutions involved in fish production value chain.

The content draws from global best practices, scientific insights, and local expertise to ensure that welfare recommendations are both technically sound and contextually relevant. It covers key aspects such as water quality, stocking densities, feeding, handling, transportation, health management, and humane slaughter, all anchored in the principles of good welfare practices: freedom from pain, distress, discomfort, and suffering.

As you explore this guide, we invite you to reflect on the broader goal it serves; which is to promote responsible aquaculture systems that protect animal welfare, support livelihoods, and ensure long-term environmental sustainability. We hope it will be a valuable resource in your efforts to improve fish health, welfare, productivity and sustainability outcomes in Ghana and across Africa.

With best regards,

The AFIWEL Program Team

One Health and Development Initiative (OHDI)

ABBREVIATIONS AND ACRONYMS

AFJ Aquaculture for Food and Jobs

ALI Aquatic Life Institute

AMR Anti-microbial Resistance

AU-IBAR African Union – Inter-African Bureau for Animal Resources

AWRA Animal Welfare Research in Africa

CEA Centre for Effective Altruism

CVON Chief Veterinary Officer of Nigeria

DVPCS Department of Veterinary and Pest Control Services

DVS Department of Veterinary Services

EA Effective Altruism
EU European Union

FAO Food and Agriculture Organisation

FC Fisheries Commission

FMARD Federal Ministry of Agriculture and Rural Development

FW Fish Welfare

FWI Fish Welfare Initiative

GAWS Global Animal Welfare Strategy

MDAs Ministries, Departments and Agencies

NAFDAC National Agency for Food and Drug Administration and

control

NGO Non-Governmental Organisation

OHDI One Health and Development Initiative

Q&A Questions and Answers

SDGs Sustainable Development Goals

TWGs Technical Working Groups
VCN Veterinary Council of Nigeria

WOAH World Organisation for Animal Health

WTO World Trade Organisation

TABLE OF CONTENTS

CONTRIBUTION AND ACKNOWLEDGEMENTS	i
COPYRIGHT STATEMENT	ii
ABBREVIATIONS AND ACRONYMS	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF PLATES	x
MODULE 1: OVERVIEW OF AQUACULTURE SECTOR IN GHANA	1
INTRODUCTION TO FISH AND AQUACULTURE	1
Aquaculture	1
AQUACULTURE IN GHANA	1
AQUACULTURE FISH PRODUCTION SYSTEMS IN GHANA	3
Extensive culture system (Culture-based fisheries)	3
Intensive culture system	5
Q&A SESSION	8
QUESTIONS FOR DISCUSSION	8
MODULE 2: INTRODUCTION TO ANIMAL WELFARE	9
THE FIVE FREEDOMS OF ANIMAL WELFARE	12
THE FIVE DOMAINS OF ANIMAL WELFARE	13
Comparing and integrating the five freedoms and domains of animal welfare	14
KEY ANIMAL AND FISH WELFARE VIOLATIONS	15
Legal Frameworks on Fish Welfare in Ghana	17
Q&A SESSION	18
MODULE 3: INTRODUCTION TO FISH WELFARE	20
WHAT IS FISH WELFARE?	20
THE FIVE PILLARS OF ANIMAL WELFARE IN AQUACULTURE	20
BENEFITS OF IMPROVED AQUACULTURE FISH WELFARE	20
INTRODUCTION TO FISH WELFARE PRACTICES	26
Q&A SESSION	27
MODULE 4: GROWING SYSTEMS AND FISH WELFARE	29
SITE SELECTION	29

REARING SYSTEMS	31
Common growing facilities and welfare considerations	32
EARTHEN PONDS	32
Concrete Tanks	34
Mobile & other Fishpond Systems	36
Common welfare issues with fish grown in mobile fishpond systems	38
Recirculatory Aquaculture System (RAS)	39
Issues of fish welfare with water recirculatory system	40
Cages and Pens	40
Issues of Fish Welfare with Cages and Pens	42
STOCKING DENSITY	42
How to measure stocking density	43
Recommended Stocking Densities	44
Q&A SESSION	44
MODULE 5: WATER QUALITY AND FISH WELFARE	46
INTRODUCTION TO WATER QUALITY	46
CONSIDERATIONS FOR OPTIMAL FISH HEALTH AND WELFARE	46
Life Stage and Species-Specific Considerations	47
Catfish Welfare and Water Quality	49
How to Measure and Correct Water Quality Parameters	49
Solutions for Out-of-Range Parameters	49
Q&A SESSION	50
QUESTIONS FOR DISCUSSION	51
MODULE 6: FEEDING AND FISH WELFARE	52
GENERAL BEST PRACTICES FOR FEEDING	52
COMPOSITION AND QUALITY OF FEED INGREDIENTS	53
FISH FEED AND SPECIFIC WELFARE CONSIDERATIONS	53
Q&A SESSION	54
MODULE 7: FISH WELFARE DURING HANDLING AND TRANSPORTATION	56
HANDLING AND FISH WELFARE	56
Welfare Considerations in Fish Handling	56
TRANSPORTATION AND FISH WELFARE	57
Welfare considerations in fish transportation	57

Q&A SESSION	60
MODULE 8: SLAUGHTERING & FISH WELFARE	62
OVERVIEW OF HUMANE FISH SLAUGHTER	62
BENEFITS OF HUMANE SLAUGHTER OF FISH	63
PRE-SLAUGHTER WELFARE CONSIDERATIONS	64
COMMON FISH SLAUGHTER METHODS	65
OVERVIEW OF SLAUGHTER PROCESSES IN GHANA	71
GENERAL GUIDANCE FOR HUMANE SLAUGHTER METHODS FOR FISH	71
Q&A SESSION	72
MODULE 9: ENVIRONMENTAL ENRICHMENT AND FISH WELFARE	74
WHAT IS ENVIRONMENTAL ENRICHMENT?	74
TYPES OF ENVIRONMENTAL ENRICHMENT	76
BENEFITS OF ENVIRONMENTAL ENRICHMENT	77
SPECIES RECOMMENDATIONS FOR ENVIRONMENTAL ENRICHMENT	78
Catfish	78
Tilapia fish	80
Q&A SESSION	83
MODULE 10: FISH HEALTH AND WELFARE	84
ANIMAL HEALTH AND WELFARE	84
BIOSECURITY FOR FISH HEALTH AND WELFARE	84
Benefits of Biosecurity on Fish Farms	86
Common bio-security measures and practices	87
FISH DISEASES AND IMPACTS	88
Common Protozoan diseases of fishes in Ghana	92
Viral diseases of fish in Ghana	93
General treatment options	93
Disease reporting	94
ANTI-MICROBIAL RESISTANCE	94
Impact of AMR	96
COMBATING AMR	96
Q&A SESSION	97
REFERENCES	gc

LIST OF FIGURES

Figure 1 Aquaculture production in Ghana from the year 2008 to 2022 (in 1,000 metric	;
tonnes)	2
Figure 2 Extensive aquaculture system (GRID & NEA) being harvested in Northern Gho	ına
(source: https://grid-nea.org/2009/09/fish-farming-a-first-in-Northern-Ghana/) Figure 3 An Earthen Fishpond, example of Semi-Intensive aquaculture system with supplemental feed. Theophilus Ezrane Fish Farm, New Nzulezo, Jomoro —Photo credit:	
Isaac Frimpong Arthur	
Figure 4 Circular tanks (Greenhouse RAS system with paddle-wheel aerator and	
biofilter), an example of an Intensive aquaculture system. National Aquaculture Train	ing
Centre, Amrahia, Accra. Source: https://www.agritopgh.com/project/national-	
aquaculture-centre/	6
Figure 5 Impacts of poor animal welfare [Extracted from Oluwarore (2022)]	. 11
Figure 6 The Five Domains of Welfare (Source: Zoo Aquarium, Australia)	. 14
Figure 7 Schematic representation of earthen ponds (Source – FAO)	. 33
Figure 8 Insulated holding tanks	. 58
Figure 9 Schematic for the decision-making process in Environmental Enrichment; OV Operational Welfare Indicators; PFF: Precision Fish Farming; (Source: Arechavala-Lope et al., 2021)	
51 UI.,	. /3

LIST OF TABLES

Table 1 Comparing the five freedoms and the five domains of animal welfare (Source	-
RSPCA)	15
Table 2 Water quality parameters for catfish and tilapia	48
Table 3 Protein requirement and feed size required for different sizes of tilapia (source:	
AFJ Manual, 2022)	53
Table 4 Environmental Enrichment Recommendation for Catfish Species	78
Table 5 Environmental Enrichment Recommendation for Tilapia Fish Species	80

LIST OF PLATES

Plate 1 Figure 2 Fish species cultured in Ghana (a)-(d) (Source: https://www.fishbase.s	se)
	3
Plate 2 Photograph of an integrated aquaculture system; Fa Debie Fish Farm, Half Assi	ini,
Jomoro-Photograph by Isaac Frimpong Arthur	7
Plate 3 An example of an Aquaponics set-up (Source:	
https://www.gothicarchgreenhouses.com/aquaponic-system)	7
Plate 4 Photograph of dug-out earthen ponds used for housing fish in their clusters,	
Assiko Fish Farm-New Edobo, Jomoro	. 32
Plate 5 Photograph of concrete tanks constructed to house fish. Akannimos Fish Farm,	,
Half Assini – Photograph by Isaac Frimpong Arthur	. 35
Plate 6 Concrete tanks built in an enclosed housing space to house fish; Source –	
Everlush.ng	. 36
Plate 7 Photograph of plastic tank pond set-up to rear fish (Source – Everlush.ng)	. 37
Plate 8 Photograph of tarpaulin fishpond set-up at Amazing Youth Fish Farm - New	
Ankasa -Jomoro	. 38
Plate 9 Photograph of tarpaulin pond set-up to house fish with tarpaulin material place	ed
in a dug-out earthen space; Source – Everlush.ng	. 38
Plate 10 Photograph of Small-scale Backyard RAS Fish Pond set-up; (Source –	
Hydroponics Nigeria)	. 39
Plate 11 Photograph of RAS Fishpond set-up; (Source – Africaninfoblog)	. 40
Plate 12 Photograph of fish cage set-up; (Source – Everlush.ng)	. 41
Plate 13 Photograph of tilapia fingerlings packaged for transportation, Photo Credit:	
POMEGRID AQUA, Takoradi (Hatchery)	. 59

MODULE 1: OVERVIEW OF AQUACULTURE SECTOR IN GHANA

This module explains the meaning of 'aquaculture' and summarizes the common types of aquaculture systems that are practiced in Ghana

INTRODUCTION TO FISH AND AQUACULTURE

For fishery and commercial purposes, a fish is any gill-bearing aquatic animal with fins and a backbone or any gill-bearing aquatic organism without a backbone which is used for food. As aquatic animals, they inhabit both freshwater and marine environments, ranging from rivers and lakes to oceans. Fish is a significant source of protein providing vital nutrients such as omega-3 fatty acids, vitamins and minerals to millions of people worldwide. The global annual per capita consumption of fish is anticipated to reach 21.4kg by 2033 (OECD/FAO, 2024). The growing global demand for fish is a key driver of the rapid expansion of the aquaculture food production sector, now supplying over 50% of the world's fish consumption (FAO, 2023).

Aquaculture

Aquaculture is the farming of aquatic organisms including fish, molluscs, crustaceans and aquatic plants under controlled conditions. Farming implies some form of intervention in the rearing process to enhance production such as regular stocking, feeding, security from predators etc. Farming also means individual or corporate ownership of the stock being raised. As wild fish stocks face pressure from overfishing and habitat degradation, aquaculture offers a solution to provide a stable, sustainable supply of fish. However, it also faces challenges, such as environmental pollution, disease outbreaks, and the need for responsible practices to ensure sustainability.

AQUACULTURE IN GHANA

Fish constitutes 50–80% of animal protein consumed in Ghana (Sumberg *et al.*, 2016; FAO, 2018a) with consumption rate ranging from 20-25kg/capita/year, higher than that of the average 14kg for ECOWAS (GNADP, 2024-2028). Ghana's aquaculture sector saw a significant growth between 2008 and 2018, with

production surging from 5,590 metric tonnes to 76,630 metric tonnes. However, this growth was abruptly interrupted in 2019, as outbreaks of the Infectious Spleen and Kidney Necrosis Virus (ISKNV) and Streptococcus (1a and 1b) in the Volta Basin caused production to plummet to 52,360 metric tonnes (Statista, 2025). The ISKNV and Streptococcus menace significantly impacted cage culture farms, which account for over 60% of annual aquaculture fish production (2021 Annual Performance Report, FC), further contributing to this production decline. Despite this setback, the sector rebounded strongly, reaching 132,680 metric tonnes in 2022 (Statista, 2025).

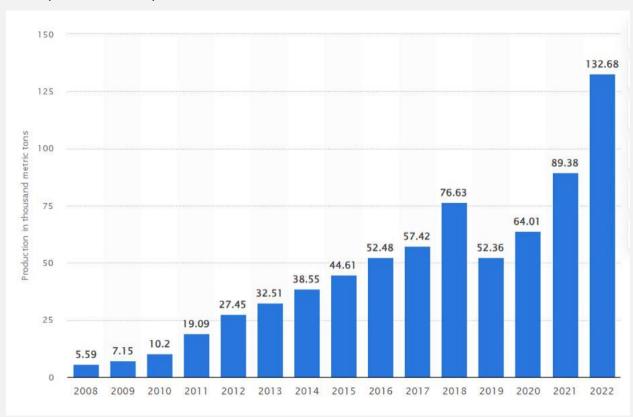


Figure 1 Aquaculture production in Ghana from the year 2008 to 2022 (in 1,000 metric tonnes)

Ghana's aquaculture is predominantly produced in freshwater with the Nile tilapia (>70%) and the African catfish (~20%) being the main cultured species. Indigenous species, including the African Bonytongue and African Snakehead, are currently subjects of research for future culture initiatives. Although several high performing commercial projects have lately developed, the sector is still dominated by extremely underperforming non-commercial systems (extensive,

small-scale and subsistence), frequently using earthen ponds (GNADP, 2024-2028).

Plates of Fish Species Cultured in Ghana

(b) African catfish (Clarias gariepinus). Source: https://ffanch.com/product/catfish/

(c) African Bonytongue (Heterotis niloticus).

(d) African snakehead (Parachanna Africana) Source: https://www.nytimes.com

Plate 1 Figure 2 Fish species cultured in Ghana (a)-(d) (Source: https://www.fishbase.se)

AQUACULTURE FISH PRODUCTION SYSTEMS IN GHANA

Holding facilities mostly used to raise fish in Ghana include earthen ponds, cages, concrete/tarpaulin tanks, Intermediate Bulk Containers (IBC) tanks and dams. These are used in semi-intensive, intensive, extensive, integrated culture system of farming and aquaponics. These systems are differentiated based on the stocking density of the culture organisms, the level of inputs and the degree of management. These are explained in more detail below.

Extensive culture system (Culture-based fisheries)

Extensive systems use low stocking densities. Fish depends solely on natural foods with little to no supplemental feeding. It is the system with the least investment and management in Ghana. This system is mostly used for freshwater staple-food fish species by small-scale farmers. This system is mostly found in the Northern, North East, Upper West and Upper East regions of Ghana. They are carried out in

large irrigation sites, reservoirs, dams, homestead ponds or water enclosures close to rivers and streams. Yield is poor and survival is low. Labour and investment costs are the lowest with this system.

Figure 2 Extensive aquaculture system (GRID & NEA) being harvested in Northern Ghana (source: https://grid-nea.org/2009/09/fish-farming-a-first-in-Northern-Ghana/)

Semi-intensive culture system

With Semi-Intensive System, care is taken to develop natural food by fertilization with supplemental feed. Yield and survival are moderate compared to Intensive culture system of production. This is the most practiced system in Ghana and involves earthen ponds, and tanks with relatively higher stocking density compared to Extensive culture system of production. Most farmers practice this system in waterlogged areas or wetlands where water naturally fills the dug-out pond after construction. If the topography of an area prevents a well-designed outlet, ponds can suffer from ammonia poisoning due to limited water

exchange. These ponds may also be vulnerable to flooding.

Figure 3 An Earthen Fishpond, example of Semi-Intensive aquaculture system with supplemental feed. Theophilus Ezrane Fish Farm, New Nzulezo, Jomoro —Photo credit: Isaac Frimpong Arthur

Intensive culture system

Under this system, fish are fed on completely formulated feed. Water quality is actively maintained by regular water changing, use of aeration and biofilters. Compared to the other culture systems, intensive farming is a well-managed form of fish farming in Ghana where meticulous attempts are made to achieve maximum production. This system may involve tanks, cages, ponds and more recently, Recirculatory Aquaculture Systems (RAS) and Biofloc with very high stocking densities. Intensive system is usually expensive for farmers to set up. It is also often the system with the most welfare issues due to its intensive factory farm settings. In Ghana, intensive culture system is mostly practiced at the Ghana National Aquaculture Training Centre & Commercial Farms, some large-scale commercial farms and a few private small-scale farms. Survival rate is very high leading to high yield.

Figure 4 Circular tanks (Greenhouse RAS system with paddle-wheel aerator and biofilter), an example of an Intensive aquaculture system. National Aquaculture Training Centre, Amrahia, Accra. Source:

https://www.agritopgh.com/project/national-aquaculture-centre/

Integrated aquaculture system

Integrated aquaculture system involves the production of fish and crops or livestock/poultry in a farm. This system is not popular and is now being promoted in Ghana. Examples include poultry-fish farming, rice-fish farming, fish-piggery and aquaponics. Farmers with tarpaulin and concrete tanks who often discharge wastewater by gravity are being taught and encouraged to use them for irrigation. In some cases, farmers manually fetch the water with watering buckets to irrigate crops. The core idea is to utilize the nutrient-rich wastewater generated from fish farming to fertilize and irrigate crops (i.e., fertigation). This creates a closed-loop system, minimising waste and maximizing resource utilization. It is environmentally friendly as it saves water and does not rely on artificial fertilizers.

Plate 2 Photograph of an integrated aquaculture system; Fa Debie Fish Farm, Half Assini, Jomoro-Photograph by Isaac Frimpong
Arthur

Aquaponics

Aquaponics is an integrated aquaculture system that combines fish production (or other aquatic organisms) with hydroponics (growing plants in water) in a symbiotic relationship. Fish waste provides nutrients for the plants, and the plants clean the water for the fish. With this system, the basic components of RAS are utilized. However, the plants become the biofilters purifying water back into the system by assimilating nitrogenous waste products generated by fish and feed. This system reduces disease transmission and spread of infection and saves water. However, it is capital intensive and requires professional knowledge.

Plate 3 An example of an Aquaponics set-up (Source: https://www.gothicarchgreenhouses.com/aquaponic-system)

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Introduce yourselves. Have you heard about Fish Welfare? What is it?
- Farmers to describe their fish farm (intensive, extensive, semi-intensive, culture system, species of fishes, number of fishes, location, successes and challenges etc.). Others (non-farmers) should discuss why they are taking the course and what they seek to benefit?
- Can you share with us the different fish farming systems you know (by practice/observation/knowledge)?
- What is/are the most common fish farming system(s) practiced in your area? Why is this system common?
- Tell us which fish farming system you prefer the most and why. Share your personal experiences (if any) with your preferred fish farming system including the advantages and disadvantages.
- Have you practiced integrated aquaculture before? If yes, share details of the integrated fish farm system, your experience with it, and what you consider as advantages and disadvantages of the system.
- Have you attempted to culture any other fish species apart from tilapia and catfish? If yes, share details of the species and your experience with it.

MODULE 2: INTRODUCTION TO ANIMAL WELFARE

This module provides a basic introduction and overview of animal welfare, including information on the general animal welfare principles and rationale. We also introduce the 5 freedoms and domains of animal welfare and shared insights to general animal/fish welfare violations and practices. Lastly, we provide insights to provisional country-level legal frameworks in Ghana on Animal and Fish Welfare.

OVERVIEW, HISTORY AND TRENDS OF ANIMAL WELFARE

Animal welfare refers to the physical and mental state of an animal, encompassing all aspects of its wellbeing. It involves ensuring animals are healthy, comfortable, well-nourished, safe and able to express their natural behaviours, while minimising suffering and distress. Though previously marginalized, the field of animal welfare has continued to grow and advance over the last three decades and more due to the increasing recognition and appreciation of the link between animal sentience and animal well-being. Animal welfare used to focus mostly on health disposition, improved ways of detecting health issues and animal management (Pinillos et al., 2015). However, it has evolved to now include a better understanding of animals' social behaviours, cognitive abilities, and ability to feel and express pain and suffering (Mendl et al., 2009; Broom, 2011).

The following provides chronological notable highlights of events in the evolution of animal welfare:

1) Ancient civilizations (Prehistoric times - 600 BCE)

- Early human societies had varying attitudes towards animals, ranging from reverence and protection to exploitation.
- Some ancient civilizations, such as the ancient Egyptians and Greeks, held certain animals in high regard and established laws to protect them.

2) Religious influence (600 BCE - 1800 CE)

- Religious texts, such as the Old Testament in Judaism and Hindu scriptures, promoted compassion and respect for animals.
- Philosophers like Pythagoras and later Saint Francis of Assisi advocated for the ethical treatment of animals.

3) Animal welfare movement (1800s)

- The Industrial Revolution brought increased urbanization and factory farming practices, leading to concerns about animal welfare.
- Influential figures such as Richard Martin and William Wilberforce in Britain campaigned for the welfare of working animals and passed laws against animal cruelty.

4) Formation of animal welfare societies (19th century)

 Animal welfare societies, such as the Royal Society for the Prevention of Cruelty to Animals (RSPCA) founded in 1824, emerged to promote animal welfare and enforce animal protection laws.

5) Laboratory animal welfare (20th century)

- Concerns grew regarding the use of animals in scientific experiments, leading to the establishment of regulations and guidelines for laboratory animal welfare.
- Organizations like the American Society for the Prevention of Cruelty to Animals (ASPCA) and the Humane Society of the United States (HSUS) expanded their work to address animal experimentation.

6) Modern animal welfare movement (Late 20th century - present)

- Animal welfare concerns expanded to various areas, including factory farming, animal entertainment and wildlife conservation.
- Animal welfare legislation and regulations are being enacted globally, focusing on issues such as animal transportation, humane slaughter and the use of animals in entertainment.
- Non-governmental organizations (NGOs) and grassroots movements are playing a significant role in advocating for animal welfare and raising awareness about animal cruelty.

However, despite these remarkable improvements in best practices globally, poor animal welfare practices are still prevalent and remain a challenge. This apparent neglect has been attributed to several reasons such as poor awareness,

inadequate resources, poor policy frameworks and socio-cultural influences (including traditional or religious biases), among other constraints.

On a more positive note, animal welfare is also receiving increasing recognition as an important contribution to an interconnected myriad of animal, human, environmental and ecosystem health (One Health), and sustainable development outcomes. This has led to the development of the on-going 'One Welfare' concept that encourages interdisciplinary partnership to improve animal and human welfare simultaneously and incorporate the environmental components of welfare (Marchant-Forde & Boyle, 2020).

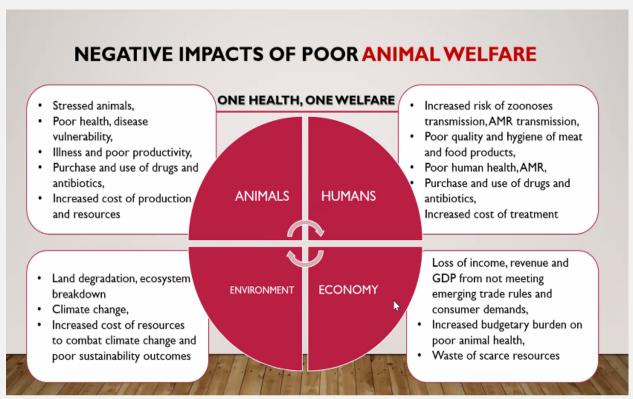


Figure 5 Impacts of poor animal welfare [Extracted from Oluwarore (2022)]

For example, improved animal welfare practices can contribute to a reduction in animal diseases and zoonoses in humans (Madzingira 2017), reduces mortality, improves growth, increases feed efficiency and, all in all, improves production performance; foster human and animal bonds that improve human health and social wellbeing (Freisinger, 2021); and positively impact food safety and meat quality (Animal Welfare Institute, 2018). Furthermore, according to CIWF (2020),

addressing welfare concerns such as housing and good management practices, have positive impacts on animal health, farms' environmental footprint and economic and social performance. This recognition has stimulated concerted efforts by stakeholders at all levels to improve the welfare of animals, reduce their pain and suffering and enhance their health and well-being.

THE FIVE FREEDOMS OF ANIMAL WELFARE

In the quest for improved animal welfare, a major advancement is the development of the "Five Freedoms of Animal Welfare". This has contributed to the recognition, understanding and establishment of good animal welfare systems and practices. The Five Freedoms of Animals are globally validated basic guidelines and indicators used to determine the welfare status of animals, including fish. It has been touted by several in-country and international animal health and welfare organizations, including the World Organisation for Animal Health (WOAH). The 'Five Freedoms' include freedom from thirst and hunger, freedom to display natural typical behaviour, freedom from discomfort, freedom from fright and despair as well as freedom from disease, pain, and injury (Mellor, 2016).

The following provide a detailed explanation of the Five Freedoms (which applies to fish):

- Freedom from hunger and thirst meaning the expected provision of adequate measures of food and water provided in timely, consistent, balanced and nutritious rations devoid of contaminants and free of disease-causing organisms.
- 2. Freedom from discomfort meaning the provision of a comfortable environment that involves a healthy, and good quality water ecosystem, and existence that is devoid of restrictions, unpleasant perceptions and harsh environmental conditions (including but not limited to rainy, extreme cold or hot weather or water environment, noise, or fearful situations).
- 3. **Freedom from pain, injury, and disease** meaning providing adequate care and environmental conditions that are devoid of (but not limited to)

any form of infliction of painful or injurious experience, provision of standard fish management practice and biosecurity measures, prompt and quality veterinary care and treatment, and good anti-microbial stewardship.

- 4. Freedom to express normal and natural behaviour This includes the provision of conditions that are not unduly restrictive in which the fish can move around (including swimming and other fish locomotion, vocalizing, feeding and interacting with other fishes) within the considerable limits of a protected and safe environment, duplicating its natural settings or environment as much as possible and allowing the animals to express its natural instincts and behaviours.
- 5. **Freedom from fear and distress** this includes considerate humane treatment of fish in a manner that does not induce fear, anxiety, distress, or other forms of psychological suffering to the animals.

It is important to note that while all Freedoms have their distinct roles, logically, they all feed into and impact each other in several ways. For example, an animal's "freedom from hunger and thirst" contributes to the satisfaction of the other four freedoms.

THE FIVE DOMAINS OF ANIMAL WELFARE

Though the Five Freedoms of Animal Welfare provide a strong basis for assessing animal welfare standards, a more updated framework called the Five Domains of Animal Welfare has since been established (Figure 2.2). The five domains include Nutrition, Environment, Health, Behaviour, and Mental Domains (Mellor, 2017). These domains are described as a science-based best practice framework for assessing animal welfare and quality of life. The first four domains provide information about the animal's various experiences, which make up the fifth domain, the Mental Domain. It allows a distinction to be made between the physical and functional factors that affect an animal's welfare and the overall mental state of the animal arising from these factors. It also recognizes that animals can experience feelings, ranging from negative to positive. In the last 20 years, this framework has been widely adopted by organizations globally as a tool

for assessing the welfare impacts of farm animals, research procedures in animals, pest animal control methods and other interventions in animals' lives in many organizations.

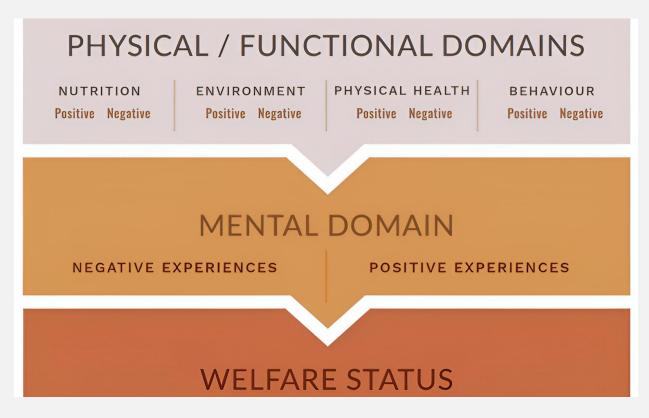


Figure 6 The Five Domains of Welfare (Source: Zoo Aquarium, Australia)

RSPCA shares more details on the value of the five domains, explaining that to help ensure animals have 'a good life', they must have the opportunity to have positive experiences including satisfaction and satiation. To enable this, those responsible for the care of animals need to provide them with environments that not only allow but encourage animals to express behaviours that are rewarding. Thus, the five domains provide a means of evaluating the welfare of an individual or group of animals in a particular situation, with a strong focus on mental well-being and positive experiences.

Comparing and integrating the five freedoms and domains of animal welfare

The five freedoms and five domains frameworks comparatively contain essentially the same five elements. However, the five domains explore the mental state of an animal in more detail and acknowledge that for every physical aspect that is affected, there may be an accompanying emotion or subjective experience that may also affect welfare. This is useful in terms of reinforcing the message that emotional needs are equally important as physical needs for animals. For example, Zoo Aquarium indicates that while they recognize the value of using the five freedoms for driving the prevention of negative welfare in animals, they also apply the five domains for animal welfare assessment to progress beyond preventing bad animal welfare to include actively promoting positive animal welfare.

Table 1 Comparing the five freedoms and the five domains of animal welfare (Source – RSPCA)

Five Freedoms of Animal Welfare	Five Domains of Animal Welfare
1. Freedom from hunger and thirst	1. Nutrition
2. Freedom from discomfort	2. Environment
3. Freedom from pain, injury and disease	3. Health
4. Freedom to express normal behaviour interactions	4. Behavioural
5. Freedom from fear and distress	5. Mental state/experiences

KEY ANIMAL AND FISH WELFARE VIOLATIONS

In many countries, it is seen that several violations of the five freedoms of animals occur to varying degrees. Although it may seem like the norm in many places (for example, in Ghana), animal abuse is getting less accepted across the world and animal welfare is highly regulated in many countries. Poor welfare practices common in fish and other animals are listed as follows:

- Inhumane transport which causes discomfort such as overcrowding, exposure to uncomfortable weather or other environmental factors and diminished water quality.
- Inhumane slaughter (painful, fearful or distressing to animals) and inappropriate stunning and slaughter methods.

- Inhumane handling and mutilation practices especially without anaesthesia (such as eye-stalk ablation in female shrimp or the incision on the abdomen of the male to extract milt for artificial reproduction).
- Inhumane animal training for sports, entertainment and catch and release of fish during angling for leisure.
- Factory farming including restrictive or confined housing.
- Lack of quality and timely intervention of veterinary care and treatment (including the use of untrained animal health practitioners).
- Anti-microbial misuse (from self-medication, poor quality veterinary services or unethical practice) or overuse (to compensate for poor animal welfareinduced immunosuppression).
- Administration of growth hormones, with resultant anatomical and physiological conditions that cause discomfort, pain and poor health to the animal.
- Inadequate provision of food/water, excessive fasting periods or withdrawal of food and water for manipulative purposes. Prolonged periods of feed restriction for fish grading, transport, slaughter and other farm management practices such as vaccination, which can cause stress, suffering and injuries such as dorsal fin damage.
- Exposing fish to harmful or strenuous conditions during research without proper ethical and welfare considerations.

LEGAL FRAMEWORKS FOR ANIMAL AND FISH WELFARE IN GHANA

Ghana lacks comprehensive legislation specifically addressing animal welfare concerns like transport, slaughter methods and the use of animals in research. Legal framework for animal and fish welfare in Ghana is evolving. Chapter 9, Section 303 of the Criminal Code of Ghana, Amendment (2003) Act 646 [an amendment of the Criminal Offences Act of 1960 (Act 29)], prohibits 'unnecessary cruelty' to animals and establishes penalties for individuals who engage in activities that harm animals unnecessarily. It also includes exceptions for animals being slaughtered or set for slaughter for food. Other legislation includes:

- Diseases of Animals Act, 1961 (Act 83): This act primarily focuses on preventing and controlling the spread of infectious and contagious diseases among animals in Ghana.
- Veterinary Surgeons Law, 1992 (PNDC L305 C). This act governs the practice
 of veterinary medicine in Ghana. It establishes the veterinary council of
 Ghana and outlines the scope of veterinary practice prohibiting
 unauthorized individuals from practicing veterinary medicine.
- Biosafety Act, 2011 (Act 831): This act provides a framework for the safe handling, use and transportation of genetically modified organisms (GMOs) and other potentially hazardous biological materials.
- Ghana Livestock Development Policy and Strategy (GLDPS) 2016: While this
 is not a legal instrument, it outlines the government's approach to animal
 welfare, emphasizing responsible animal husbandry practices.

Legal Frameworks on Fish Welfare in Ghana

Currently, Ghana lacks a dedicated law specifically addressing fish welfare. However, certain aspects of fish welfare are addressed within:

- **Fisheries Regulations**, **1979**: This legislation recognizes that importation of live fish has implications on aquaculture. It defines proper fishing methods, regulates and also stipulates the requirements for importing live fish into Ghana, as well as sea worthiness of boats.
- **Fisheries Act, 2002 (Act 625):** This act focuses on sustainable fishing practices, including regulations on fishing gear and methods to minimise by-catch.
- Fisheries and Aquaculture Regulations, 2010 (L.I.1968): This regulation requires obtaining a permit before commencing any aquaculture activity.
 It provides guidelines for responsible aquaculture practices, outlines circumstances under which aquaculture permits can be revoked, and regulate the importation of fish species into the country.

- Fisheries (Amendment) Regulations (L.I. 2217 of 2015): This further strengthens licensing and international cooperation in controlling illegal and unreported fishing.
- Ghana Aquatic Animal Health Policy (GAAHP) 2017: This policy focuses on five key areas within farmed and wild fisheries to achieve its broad objectives: enhanced biosecurity, improved emergency response capabilities, strengthened surveillance and diagnostic systems, responsible pharmaceutical use, and improved education in aquatic animal health management. It also references principles such as the humane treatment of aquatic animals, focusing on welfare as part of broader health management (Section 2.1.4). Areas for improvement in Fish Welfare include:
 - Explicit fish welfare guidelines: The policy could benefit from a dedicated section on fish welfare to ensure humane treatment beyond disease management.
 - Handling and stocking practices: There should be clearer guidelines on stocking densities specific for species and growing systems and handling to minimise stress and physical injury to fish.
 - Water quality and enrichment: Emphasizing the importance of optimal water quality and environmental enrichment could improve welfare.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org. > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Reflect on the topic of animal welfare generally. Were you aware of "animal welfare" before now? Did you consider it important in the management of animals? Have you ever thought about animal welfare in your daily activity? How do you think animal welfare can achieve better production outcomes or better food quality? Can you give an example you know where implementing animal welfare practices also improved human wellbeing and environmental health?
- Discuss general animal welfare practices and violations in Ghana. Which of the animal welfare violations listed are common in Ghana?
- What should be done to address and prevent poor animal welfare practices in Ghana? Discuss your thoughts and feedback on the animal welfare legal framework in Ghana. Is this enough? Are there gaps? Recommendations?
- What should be done to push for the establishment and implementation of the Animal Welfare Law (including fish welfare) in Ghana? How can you support this?

MODULE 3: INTRODUCTION TO FISH WELFARE

This module provides an overview of farmed fish welfare, the five pillars of welfare in aquaculture, and the corresponding benefits of fish welfare practices.

WHAT IS FISH WELFARE?

Fish welfare refers to the physical and mental well-being of fish, encompassing their health, comfort and quality of life. It involves ensuring that fish are treated with respect and care, and that their needs are met to minimise stress, suffering and discomfort.

A fish (farmed or wild) is in a state of good welfare if it is in good health with all its biological systems working appropriately; can lead a natural life and meet its "behavioural needs" in the environment; is free of negative experiences (such as pain, fear, hunger, thirst, distress); has access to positive experiences (such as social companionship, other positive experiences: relational contentment, environmental compatibility, happy co-existence and conducive environment); and can adapt to its environment.

THE FIVE PILLARS OF ANIMAL WELFARE IN AQUACULTURE

To guide the understanding of fish welfare, the Aquatic Life Institute has established certain indicators which are specific to the welfare of fish and aquatic animals. They are referred to as the '5 Welfare Pillars of Fish' and they include:

- 1. Environmental enrichment,
- 2. Feed composition,
- 3. Space requirements and stocking density,
- 4. Water quality, and
- 5. Stunning and Slaughter.

[Watch 3-minute video further insights at https://www.youtube.com/watch?v=SQTThURP9v8]

BENEFITS OF IMPROVED AQUACULTURE FISH WELFARE

1. Improved fish health: When fish are treated humanely, especially within the context of the five freedoms and domains of animal welfare, they stand a higher chance of being able to live a healthy, and optimally productive lives. This

rationale is supported by Madzingira (2018), stating that "Evidence that an animal has a good state of welfare includes having low levels of disease, displaying innate behaviour, normal reproduction and living longer. Therefore, poor animal welfare can manifest as high mortality rates, poor reproduction, increased incidence of disease, body damage, behaviour anomalies, heavy internal parasite load and severe malnutrition" – all of which are evidence of poor health and invariably lead to poor productivity. The combination of pathogen presence and stressed fish leads to disease and parasite outbreaks and there is evidence that most disease outbreaks relate to or stem from poor welfare (Aslesen et al., 2009; McClure et al., 2005). On farms, disease can induce financial hardship, food shortages and even industry failure for the farmer (Arthur & Subasinghe, 2002). Also, diseases and parasites frequently spread to wild populations, where they may endanger entire ecosystems (Naylor & Burke, 2005).

- 2) Improved quality of life: The concept of animal welfare is embedded in the provision of optimal environments for animals where they are free to express their natural behaviours without restriction, fear, or pain. In recent years, the evidence and scientific knowledge of the mental complexity of animals has become increasingly proven and generally accepted. It is stated that poor animal welfare negatively affects the animal's sentience and mental state, and impacts their ability to express their natural behaviours, leading to a poor quality of life (Nicks & Vandenheede, 2014). This poor quality of life stems from the psychological stress and suffering they experience, which may then further undermine their immune system and hence their physical health (Nicks & Vandenheede, 2014). Therefore, the establishment of these welfare enhanced environments and living conditions improves the quality of animals' lives as living, sentient beings.
- **3) Meeting emerging trade and consumer demands:** As the world continues to evolve, people are increasingly caring about animal welfare, where their products originate from, and what kind of industry their purchase promotes (Conte, 2014; Lai et al., 2018; Buller et al., 2018). Poor welfare systems for fish and other animal products are now being rejected by members of the public,

government institutions and consumers. Animal welfare standards are being entrenched as part of the several measures used in determining an acceptable sustainable animal health and management system (Broom, 2008), and guide trade standards.

Consumers, institutions (WTO, WOAH), and government policies are now demanding food items from farms and companies that are welfare certified. For example, global markets such as the European Union have introduced minimum standards for welfare and humane treatment (Buller et al., 2018). Additionally, with animal welfare gaining attention in political agendas, the EU is currently reviewing its animal welfare legislation including stunning and slaughter for farmed fish. Therefore, the integration of welfare (alongside animal health and food safety standards) in marketing and trade of animal products has driven a change in the actions and behaviours of farmers and associated companies to implement and improve fish welfare standards and get certified. This has become a concern in export trade where there are higher chances of acceptability of fish and fish products that are welfare certified. With more products than ever, consumers can now choose between animal protein and new alternatives. Therefore, the only way farmers can remain viable in this increasingly competitive and dynamic market is by offering high quality, welfare-oriented, and certified healthy products or choosing an alternative means of sustainable livelihood. Exporting to these countries requires welfare to be a core part of production and introducing higher welfare standards demonstrates that companies are responding to consumer demands and evolving government policies. It also demonstrates a commitment to growth and product quality.

4) Improved productivity and sustainable livelihoods: Increased welfare can improve productivity and potentially profit, and it is an element that mitigates adverse impacts on the environment, climate and sustainable livelihoods. There is evidence that higher welfare standards in production settings and improved efficiency are closely correlated, and it often reflects good fish health,

productivity and return on investment for the farmers. Some of this is detailed by Fish Welfare Initiative (FWI) which discuss the following evidence:

- Some studies show that farmers who integrate welfare on their farms witness less aggression, reduced fin damage, improved growth rates and improved feed conversion ratios (Stewart et al., 2012; Schneider et al., 2012).
- One study found that the introduction of aerators to enhance water quality increased survival rates by roughly 43%, led to increased fish production, and boosted farm profits (Qayyum et al., 2005).
- Appropriate transport and handling further reduce stress and mortality rates (FAO, 2008).
- Keeping suffering and stress affiliated with slaughter to a minimum is reported to ensure not only animal welfare but also high product quality (Holmyard, 2017).
- Welfare-oriented products are also appreciated by customers who are willing to pay extra for welfare-friendly options (Lai et al., 2018; BENEFISH, 2010). By improving welfare, farmers not only improve their efficiency, but can also sell their products for a premium price and increase their revenue.
- 5) Food quality and safety: Also, as detailed by FWI, fish raised and slaughtered with adherence to welfare and health guidelines may be tastier and healthier to eat, and it guarantees high product quality (Poli, 2009). Stress before and during slaughter not only affects them but also leads to reduced quality. Fish products can contain bacteria, viruses, biotoxins, and parasites, all of which occur more frequently under poor welfare situations or practices, and prolonged stress can increase bacterial growth post-slaughter (EFSA, 2008; EFSA, 2009). On the other hand, reducing stress during cultivation and slaughter safeguards fish welfare and increases fillet quality. For example, effective stunning methods reduce harmful postmortem processes. As a result, high fish welfare ensures humane treatment, improving food quality and safety.

- 6) Sustains a healthy ecosystem and environment: As detailed by FWI, improved fish welfare reduces harmful wastewater generation which, when untreated, can degrade the environment and disrupt ecosystems (Adams, 2019). Such wastewater significantly contributes to eutrophication, causing algal blooms and ocean dead zones (Global Aquaculture Alliance, 2019). Aquaculture waste also often contains anti-microbials, leading to health problems if ingested by humans. Therefore, improved fish welfare can reduce harmful wastewater generation through the following ways:
- ➤ By using appropriate feeding systems which reduce aggression, improve feed conversion ratios (FCRs) and leave less feed suspended in the water (Gan et al., 2013).
- ➤ By using appropriate stocking densities and less crowding which further enhance feeding efficiency, reduce aggression, frequency of wounds and cannibalism, and lead to better feed conversion ratios (Santos et al., 2010).
- ➤ Less stressed fish have better immune functions (McClure et al., 2005), decreasing the need for anti-microbials. Consequently, fewer anti-microbials end up in the surrounding environment.
- Animal welfare provisions can prevent escapes from the farms into the local ecosystems. The escape of non-native fish from aquaculture farms causes competition for food and potential displacement of native fish, which could lead to deleterious consequences for wild fish populations and the local environment.
- 7) Contribution to sustainable development: As adapted from FWI, fish welfare is also an integral part of sustainable development and it contributes to the achievement of the Sustainable Development Goals (SDGs). This is also echoed by a 2023 report from the Aquatic Life Institute on the Benefits of Aquatic Animal Welfare for Sustainable Development Goals. SDGs also known as the Global Goals, were adopted by the United Nations in 2015 as a universal call to action to end poverty, protect the planet and ensure that by 2030, all people enjoy peace and prosperity (UNDP, 2023). The 17 SDGs are integrated they recognize that

action in one area will affect outcomes in others, and that development must balance social, economic and environmental sustainability (UNDP, 2023).

Fish welfare implementation contributes to the following Sustainable Development Goals (SDGs):

- ➤ Goal 1- No poverty: Aquaculture and fisheries currently provide livelihoods for 250 million people worldwide and employment for millions more. By improving fish welfare, farmers increase fish health and, thus, create a more ethical and profitable basis for their income.
- ➤ Goal 2 Zero hunger: Aquaculture significantly contributes both to global nutrition and basic income. This is particularly important in developing countries, most of whom still rely heavily on it as sources of protein and livelihoods.
- ➤ Goal 3 Good health and well-being: Fish is currently the primary protein source for millions of people, especially in developing countries. Higher welfare decreases the risk of contamination and zoonotic infections during production and processing. Generally, fish that are less stressed, have fewer disease incidence, and less need for the use of anti-microbials all of which ultimately ensures food safety. Higher animal welfare in fisheries can also support food security for coastal communities that rely on small-scale fisheries as a main source of nutrition.
- ➤ Goal 6 Clean water and sanitation: Aquaculture wastewater can contain toxic residue from fish feed and anti-microbials. Increasing fish welfare improves feed uptake, and less feed ends up in the wastewater. Higher welfare standards also decrease disease susceptibility and reduce the need for anti-microbials that diffuse into the wastewater.
- ➤ Goal 12 Responsible consumption and production: Higher welfare on fish farms reduces our ecological footprint and waste production by improving the way we farm fish, and it also ensures that we are abiding by ethical and responsible standards.
- ➤ Goal 14 Life below water: More efficient production reduces the burden of overfishing, conserves aquatic animals and allows aquatic systems to maintain

their natural balance. Reduced waste generation (e.g., ammonia) from mariculture farms prevents events that threaten aquatic life such as harmful algae blooms. Additionally, higher fish welfare decreases disease and parasite transmission between wild and farmed fish.

- ➤ Goal 17 Partnerships for the goals: Work on fish welfare involves local and international stakeholders from various sectors, including academia, research, policy advocacy and industry. By working to improve fish welfare, we can collaborate and promote sustainability, economic stability, food safety and security and more humane treatment of farmed animals.
- 8) The right thing for fish: As adapted from FWI, aquaculture is the fastest growing food sector worldwide, and already today over 50% of seafood comes from farm cultures (Ritchie & Roser, 2021). On these farms, between 73 and 180 billion fish are reared at any given time (Fishcount, 2019). In the future, aquaculture will likely expand much further and produce most of the seafood consumed. Nevertheless, most fish reared in aquaculture continue to suffer greatly. Welfare issues include diseases, crowding, improper handling, poor water quality, and the inability to display natural behaviour (e.g., Animal Charity Evaluators, 2020, Fish Welfare Initiative, 2019).

Consequently, in most aquaculture farms, fish are exposed to constant stress and mortality rates are high (Ashley, 2007). This suffering is unacceptable because fish are sentient beings capable of feeling pain as much as terrestrially farmed animals (e.g., Brown, 2014; Braithwaite, 2010; Riberolles, 2020; Babb, 2020). Even when there is no legal requirement, we have a moral obligation to provide them with a life worth living. To this end, humane rearing, appropriate transport, and slaughter methods that minimise suffering are essential.

INTRODUCTION TO FISH WELFARE PRACTICES

In most fish farm systems whether extensive or intensive fish are captured, confined and may not be able to live like they do in their natural habitats. However, intervention or adaptations can be made to their environment and

management practices that would provide a positive environment where they can express their species-specific behavioural needs and preferences. Also, welfare standards should prevent the most harmful practices and not infringe on the health and well-being of fish. This would usually include implementing the appropriate pond designs (shape and size); making appropriate choice of fish species farmed (whether Catfish, Tilapia, African Bonytongue), stocking density (number of fish per space area), feeding regime (unlike in the wild where fish can grow normally feeding on natural nutrients); water quality managements, and disease prevention, treatment, control and management. This will be discussed in full in subsequent modules.

Also, to measurably improve welfare, aquatic animal welfare standards should be specific to species, life stages and holding environments. It is important to note that, currently only a few species of fish are cultivated in Ghana, and these include:

- Nile Tilapia (Oreochromis niloticus) [most farmed, >70%]
- African Catfish (Clarias gariepinus) [~20%]
- African Bonytongue (Heterotis niloticus)
- African snakehead (Parachanna Africana)
- Giant Tiger Shrimp (Penaeus monodon)

Though there are species-specific considerations and contexts to cater for, general welfare practices can be implemented across fish species. From the inception of fish production systems to growing, production, handling, slaughter and processing, fish welfare practices should be implemented. Details on specific fish welfare practices for different stages of aquaculture production and management are discussed in subsequent modules.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- What new knowledge have you gained from this lecture on fish welfare today?
- Drawing experience from your own fish farm (or working with fish farmers),
 discuss how you plan to adapt and utilize your knowledge of the "Five Pillars of Animal Welfare in Aquaculture."
- Among all the benefits listed, what are the top 3 benefits that you look forward to attain when you implement fish welfare and why?

MODULE 4: GROWING SYSTEMS AND FISH WELFARE

This module provides guidance on the selection and evaluation of suitable sites for fish farms, provides detailed information on the various types of growing systems and their respective welfare concerns, and explains best practices for stocking density.

Before you start a fish farm, you must plan properly and consider various factors that will affect the health and welfare of your fish all of which will have a considerable impact on their productivity, and on your investment returns. It is generally recommended to first establish certain strategic planning and operational standards and protocols for your fish farm. These may include a business plan, emergency plan, biosecurity plan, stocking density protocol and other practices that can be well adopted by anyone who works on the farm. You should also have a list of required materials/tools to prevent or tackle specific situations, human resources to hire and clearly establish job functions for staff such as farm managers, veterinarians etc.

Among these arrays of planning, a major process to undertake is making a good decision on the environment in which your fish will be housed and grown. This mainly impacts on the health, welfare, and productivity of your fish. Key factors to consider include site selection, rearing systems and stocking density, and they are explained below.

SITE SELECTION

Planning where your fish will be housed must start with the siting (location) of your fish farm. Where will it be situated? What are the environmental conditions and how will they potentially affect it? These and more have been categorized below and they include the following:

Location and structure of holding facilities: Ideally, farms should not be located near industrial areas, commercial arable farms, areas prone to flooding, high tidal water, strong currents, or noise. The precautions are to prevent runoff of pollutants such as industrial wastes, effluents, fertilizers, agricultural/sewage wastes into the pond water as these reduce water quality. Poor water quality will cause stress,

disease and suffering to the fish which may result in morbidity and mortality. Flooding and strong currents may cause damage and breakdown to the culture facilities or total loss if washed away. In addition, extreme weather events observed because of climate change should also be factored into decision making regarding the structural integrity of the proposed farm. Furthermore, noise pollution can startle the fish unnecessarily leading to stress and negatively affect both male and female brooders and their breeding processes.

Environmental Impact Assessment (EIA) must be done as part of site selection to ensure minimal negative impacts. Initial cleaning and sanitation of the environment (ideally) should be carried out before siting the system. Safeguards for extreme low and high temperatures must be provided or production cycles can be tailored to favourable weather conditions to avoid unnecessary stress factors to the fish. When the temperature is too low, the fish will become very sluggish in movement, will not feed, and may eventually die. Extreme hot temperatures (as may be experienced in the northern regions of Ghana or during the dry harmattan seasons) will also lead to massive mortalities.

Construction of culture facilities or growing systems should follow stipulated standards to avoid damage to facilities, and environmental problems. All construction permits must be obtained, and hydrology of the area studied and approved before any construction work proceeds.

Other factors to consider in selecting an optimal fish farm site include:

- Accessibility to the farm,
- Constant and ample availability of water,
- Good water quality,
- Access to medications and veterinary services,
- Appropriate layout and topography of the fish farm,
- Acceptability of the project by the neighbouring communities,
- Proximity to market,
- Vegetation and soil type of the site.

REARING SYSTEMS

A rearing system (sometimes referred to as holding/growing or culture system) for fish farms is a facility which contains, grows, or holds fish for later harvest, processing, sale, or to release for conservation purposes. Fish growing or culture facilities commonly used in Ghana include earthen ponds, concrete/tarpaulin/plastic tanks, cage system, hapas, dams and dugouts. Also, in all growing systems, the intended specific purpose should be considered whether hatchery, nursery, grow-out, brood stock bank, holding or transfer tanks as these might come with varying welfare and management needs and practices.

General considerations for improved welfare in a fish culture system:

- ➤ A key welfare practice is that while fish remain in captivity, they are allowed to grow in an environment that is similar to their natural habitat as much as possible. This enhances their ability to express their natural behaviour and gives them a comfortable environment to reside in. Therefore, providing environmental enrichment of the rearing space will simulate the natural environment of these aquatic animals and improve their welfare.
- > The rearing systems should be constructed in a way that prevents damage to skin, fins and other parts of their body etc.
- > The rearing system should allow an easy, effective removal of fecal content, avoiding disturbance of the fish as much as possible.
- > The rearing system should be able to protect the fish from predators and prevent the escape of farmed fish.
- > The rearing system should prevent noise such as the ones from pumps, construction noise and other machines as this can be a disturbing factor to farmed fish.
- > The rearing system should ensure appropriate illumination of the tanks.
- > The rearing system should minimise external disturbances such as external visitors.

- > They should have proper protocols for disease prevention, disinfection and cleaning, site biosecurity, control of disturbance, etc.
- > They should have emergency plans in case of adverse climate events, fires, floods and other potential catastrophic events.
- Farmers should ensure that their staff members are regularly trained and kept informed on updated protocols and best practices established for their fish farms.

Common growing facilities and welfare considerations

Some common holding facilities and their welfare considerations and issues are discussed in detail below.

EARTHEN PONDS

A fish pond is a dug out in the form of a basin with specific dimensions and features (inlet, outlet, overflow, dike etc.) for holding water for the purpose of rearing fish (FC AFJ Manual, 2022). It is constructed manually or mechanically in a carefully selected site with enough clay soil for high water retention.

Plate 4 Photograph of dug-out earthen ponds used for housing fish in their clusters, Assiko Fish Farm-New Edobo, Jomoro

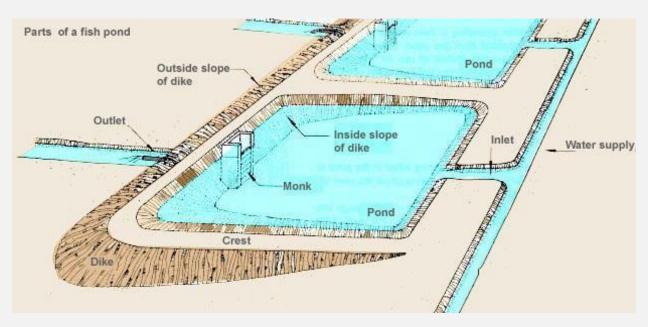


Figure 7 Schematic representation of earthen ponds (Source – FAO)

To use an earthen pond, the following welfare considerations, protocols and activities must be undertaken:

- Proper soil and water analysis must be carried out to determine suitability of location, vegetation and topography.
- Locations with clay or loam-based soil containing more than 65% clay and pH between 6.5 and 8.5 is preferable. Sites with sandy soil should be avoided due to the porous nature that may cause percolation or seepage of water, infiltration of wastewater from the surrounding into the ponds. Soil with heavy metal deposits must also be avoided.
- The pond must be structured in such a way that it will not cause flooding or obstruct water drainage flow patterns in flood plains or wetlands, or cause erosion.
- Low-lying ponds should be screened with appropriate non-toxic material to prevent fish loss during flooding as well as entry of wild fish and other predators.
- There must be adequate and continuous supply of good quality water,
 especially in areas prone to drought.
- Water sources must be free from iron as this affects fish gills and oxygen intake, causing stress, poor reproductive ability and stunting.

 Measures to cope with predators (snakes, rodents and birds) should be in place and this may include the use of screens, scare-crow and keeping the environment clean.

Common welfare issues with fish grown in earthen ponds

- Sorting the fish along the growing cycle will be difficult. The common practices of sorting and cropping fish often lead to them being brought out of water for a considerable length of time and may cause stress to them.
 While some fishes can stay out of water longer than others (e.g., catfish compared to tilapia), it should not be encouraged.
- The throwing of fish into ponds is also a grave issue of animal welfare as it temporarily disorientates them before they regain their balance.
- Cannibalism and predation are often common within the earthen pond environment, especially in polyculture. Generally, growing of carnivorous fish with other fish species with the intent of using these others to feed and grow the former is a grave and unapproved rearing method.
- Earthen ponds are highly vulnerable to environmental pollution and other hazards. There is a high probability of lower sanitation which increases the risk of disease transmission from humans to the fish and vice versa.
- Some farmers try to manipulate soil quality and provide enrichment in ponds. However, caution must be exercised to prevent wrong application and overdosing. This will negatively impact water quality (growing environment) and fish welfare. There have been reported cases of fish skin bleaching and mass mortality in growing ponds during soil enrichment, and accidental introduction of pathogens through the application of organic fertilizers. Such pollutants also have one health implication that may impact both aquatic and land animals, including humans.

Concrete Tanks

Concrete ponds are often made from concrete blocks or reinforced slabs. A mixture of sand, cement and gravel are used to prevent cracks and leakages. Therefore, water flows through the pond in and out through drains. The water may

be treated for use in crop farming and vegetable production or may be released into natural water bodies. Concrete tanks must be well designed with a complete drainage and overflow system. Also, the tank must be cured (treated with salt) before use to avoid water pollution with chemicals from the cement as this will lower the pH and make the water acidic. They can be of varying sizes and shapes. Ideally, the tanks should not be smaller than 2m x 3m and a depth of 1.2m-1.5m is desirable to cool the water. The shape could be rectangular, square or circular and is determined by several factors such as expected production, length of production period, sanitation regime and fish behavioural swimming pattern.

Plate 5 Photograph of concrete tanks constructed to house fish. Akannimos Fish Farm, Half Assini – Photograph by Isaac Frimpong Arthur

Plate 6 Concrete tanks built in an enclosed housing space to house fish; Source – Everlush.ng

Common welfare issues with fish grown in concrete tanks

- High fluctuation of temperature (temperature shock) may happen if adequate volume and consistent availability of good quality water is not guaranteed. This situation would greatly stress the fish and would often lead to mortality, if not addressed on time.
- This system is easily prone to in-built water pollution and fish mortality if daily good management practices are not strictly adhered to.
- Faulty inlet, outlet and drainage system or leakages may lead to massive fish mortality borne out of issues such as lower water levels, temperature fluctuation, oxygen depletion, etc.

Mobile & other Fishpond Systems

Mobile fishponds may be easily moved around or placed in a stationary position depending on need. They may be made up of fiberglass, wood lined with carpet or linoleum (fish vat), UV resistant PVC or polyethene and plastic tanks. These systems are also designed with inlets and outlets with a variety of designs and level of sophistication. The may be installed outdoors or indoors depending on the

objectives of the operations. Yet, in the event of excessive rise in temperature (beyond 30°C) some form of shade must be provided. Some use aerators to ensure enough oxygen concentration or have installed sprinklers (showers) at the inlet. Other mobile pond systems are not as durable. For example, wooden frames are particularly prone to wood rot which may lead to collapse of the tank, water loss and pollution. Non-resistant/non-coated metal frames may corrode especially in coastal areas leading to the collapse of the tank as fish gain weight. Improperly handled sharp objects around tarpaulin/polythene/PVC tanks may pierce into it causing leakage and loss of water.

Plate 7 Photograph of plastic tank pond set-up to rear fish (Source – Everlush.ng)

Plate 8 Photograph of tarpaulin fishpond set-up at Amazing Youth Fish Farm - New Ankasa -Jomoro

Plate 9 Photograph of tarpaulin pond set-up to house fish with tarpaulin material placed in a dug-out earthen space; Source – Everlush.ng

Common welfare issues with fish grown in mobile fishpond systems

 Increased risk of algae excess buildup on the rearing system's wall which may affect water quality.

- Possibility of an accidental introduction of food items and wastes which will cause pollution and reduce water quality.
- High risk of water temperature fluctuations that may stress fish.

Recirculatory Aquaculture System (RAS)

A water recirculating system is an automated system of aeration of the fish growing water, efficient removal of particulate matter, biological filtration to remove ammonia and nitrite, and buffering of the pH. It consists of fish tanks, sedimentation tanks, chemical and biological filter systems, aeration systems (ozone generator), and pathogen control systems. Water is re-circulated to minimise water replacement, maintain water quality conditions and compensate for an insufficient water supply. The key to this system is water quality. Farmers achieve high biomass stocking intensity by maintaining good water quality, and that requires skill and education. High emphasis needs to be placed on cleaning of intake water, good water flow inside the tank, optimized sludge removal and thorough water treatment inside the RAS.

Plate 10 Photograph of Small-scale Backyard RAS Fish Pond set-up; (Source -Hydroponics Nigeria)

Plate 11 Photograph of RAS Fishpond set-up; (Source – Africaninfoblog)

Issues of fish welfare with water recirculatory system

- It is a highly intensive system that is not often welfare friendly. It consists of high stocking density which restricts fish movement and behaviour and causes stress.
- The capital-intensive maintenance of the system may not be sustainable, and any slight disruption may create immense stress on the fish.
- Sourcing and availability of high-quality feed required may be difficult.
- Disruption to continuous electric power supply will lead to ammonia build up in the system and fish blood leading to stress, pain and in extreme cases, death.
- System breakdown will create stress on the fish and may lead to high mortalities.
- Its complex nature requires skilled personnel to manage it.

Cages and Pens

A cage is a net enclosure usually suspended in a water body anchored on the natural waterbed kept buoyant by floats and used for farmed fish. A pen is a shallow water enclosure for the rearing of fish in an open water body and often

sits on the floor of the water body. These should be constructed not to obstruct navigation on water, as the regular movement of the cages and pens to allow passage to other users of the water bodies will cause extreme stress to the fish which may affect the rate of feeding and their health. The cage and pen should not be constructed on waterways that are used for navigation. Cages can be installed in deeper waters (>4m) whereas pens should be in shallow waters (1-2m). Also, the materials used must be durable to withstand severe weather conditions and prevent the inflow of debris while allowing for the free flow out of the system excess feed that will pollute water. Often, farmed fish rely on natural live foods within the environment augmented with artificial feed when the stocking densities are high, which is a common practice with such systems.

Plate 12 Photograph of fish cage set-up; (Source – Everlush.ng)

Issues of Fish Welfare with Cages and Pens

- The system is vulnerable to environmental pollution from the surrounding water body. Also, other environmental hazards and predators will stress the fishes.
- Use of poor-quality material may create tears and openings for other unintended stray fish species, predators or aquatic animals' access to the cages and pens, and these could hurt farmed fish, introduce extraneous pathogens, and diseases to farmed fish, and vice versa.
- Conflicts in the use of waterways and upstream activities could lead to disruption of maintenance activities, and disturbances to the fishes in cages and pens.

STOCKING DENSITY

Stocking density (kg fish/m³) describes the number of fish per unit of water in the rearing system. Optimal stocking densities is based on several factors such as type of fish species, life stages, growing systems, water flow rates and can also depend on the environmental conditions. It is also one of the main characteristics that determine whether a fish farm is extensive or, semi-intensive or intensive. It can have a major impact on fish welfare, as it influences water quality, growth, stress status and social interactions such as aggression among the fish. For example, if you manage to maintain high water quality, which means you can increase the biomass or stocking density. However, if you don't maintain high water quality, you will need to lower stocking density else, this will lead to stress, and in extreme cases, death of fish.

For species like rainbow trout, other salmonids, tilapia and catfish, successful rearing is generally possible at densities in which all fish of the rearing unit form a community. Such fish species thrive best in groups and may develop dominant and aggressive behaviour if there is too high or too low stocking densities, or if there is one gender only. Because of this, deciding stocking densities on a fish farm is not a simple discussion to have, even though farmers usually prefer higher stocking densities as they assume this would automatically increase their

production capacity. However, from research and experience, stocking density should be carefully considered and should always be backed up by research and welfare guidelines.

How to measure stocking density

To find the current stocking density of an already stocked growing system, one needs to have the following preliminary information:

- 1) The volume of water in the growing system,
- 2) The volume of the growing system, and
- 3) The number and weight of the fish stocked. To calculate stocking density, the simple formula is:

Total number or weight/biomass of fish stocked

Volume of water in the growing system = either Biomass/volume or number/ volume.

Using biomass is preferable because it captures the current growth state of the fish better than mere numbers. For instance, 10 fish weighing 500g each will occupy more space than 10 fish weighing 100g each, thus using numbers without a regard for the growth stage can be misleading.

So, with this formula, it is assumed that a pond carrying 6,000 litres of water with 1,500 fish weighing 400g each,

Total biomass= $400g \times 1500 = 600,000g (600kg)$

Stocking density will be = $\frac{600,000}{6000}$ = 100g of fish per litre of water.

Therefore, the stocking density of that growing system will be 100g of fish per litre (going by weight/biomass of fish) of water or ¼ fish per litre (going by number of fish). Before embarking on fish farming, the stocking density for the desired species (established by research and guidance) must be known and strictly adhered to. Furthermore, the feeding habits and natural behaviours of the species in question must be known and factored into the stocking density computations as this will enhance productivity and welfare.

Recommended Stocking Densities

Information on optimal stocking density for different fish species is not novel as the optimum stocking densities for the commonly cultured fish species in Ghana (tilapia and catfish) have been established by the Fisheries Commission. Generally, the following stocking densities can be followed according to the 2022 training manual for government's flagship Aquaculture for Food and Jobs (AFJ)

- \triangleright Tilapia (Oreochromis niloticus) mixed sex = 2 3 fingerlings/m²
- ➤ Catfish (Clarias gariepinus) only = 4 8 fingerlings/m²
- ➤ All-male tilapia = 5 fingerlings/m²

However, it is very important and a good welfare practice to follow species-specific and growing system-specific recommendations for optimum stocking densities. For instance, Asaase (2013) recommends the stocking density of *Oreochromis niloticus* as 50-150 fish/m³ for cages on the Volta Lake.

As mentioned earlier, every system has a carrying capacity, and different fish species have their specific optimal stocking densities. Therefore, fish farms should not be overstocked as this has a negative impact on their health and welfare. For example, the optimal stocking density of larval catfish is 100 per square metres. After 5 weeks, 35–40 fingerlings per square metres can be harvested, each weighing 2–3 grams. Increasing this stocking density does not increase the production and while lower stocking densities will result in less fingerlings per square metres, the harvested fingerlings will be bigger in size.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org. > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Discuss each of your current growing systems for your fish farms. What problems are you facing in your farm now?
- Did you do any analysis or evaluation of your farm sites before you decided? Tell us your findings and why you decided on your current system.
- Based on what has been learned so far, how do you intend to improve the growing system and site of your farm to align with good fish welfare practices?
- Discuss your current stocking density (if you know them).
- Did you consider stocking density before starting your fish farm? How do you determine the optimal stocking density for it?
- Based on what has been learned so far, what challenges have you been experiencing, and how do you intend to improve your fish farm stocking density going forward?

MODULE 5: WATER QUALITY AND FISH WELFARE

This module discusses the impact of water quality on fish welfare and how to monitor this important factor to ensure the health and welfare of fish.

INTRODUCTION TO WATER QUALITY

Fish are in intimate contact with water. Thus, water quality is arguably one of the most critical factors for fish welfare and needs to be closely monitored. Poor water quality or rapid changes of its parameters can lead to both acute and chronic health and welfare problems for fish. Each species has its specific requirements for water quality. Under all circumstances, it must be kept at optimal levels. Water parameters include temperature, conductivity, quality pН, oxygen concentration, and nitrogenous compounds such as ammonia, nitrite and nitrate concentration, hydrogen sulphide and more. Also, the water flow rate is a critical determinant of its quality as it provides fresh oxygen supply and dilutes and disperses metabolic waste. At a high flow rate, certain rearing systems may tolerate much higher stocking densities than at a low flow one.

Flow speed and direction within a tank should be arranged in a way that all water is exchanged regularly to avoid "dead" unexchanged zones, thus preventing areas with low oxygen content and/or increasing ammonia and/or hydrogen sulphide concentration due to unwanted sedimentation of faeces and uneaten feed. Modern fish farming often relies on technical equipment to keep water quality at optimal levels. Malfunctions of such equipment may rapidly cause serious deteriorations in water quality, especially in intensive production systems. Hence, monitoring and alarm systems are necessary to detect and report rapid changes, allowing for responsive actions to address them.

CONSIDERATIONS FOR OPTIMAL FISH HEALTH AND WELFARE

Water quality is one of the most important factors contributing to fish health and their entire existence is dependent on the water environment they live in. This makes fish very sensitive to pollution and poor water quality issues. On the other hand, they will flourish and be in good health in a good water environment that

is optimal for them. To ensure good water quality for optimal fish health and welfare, the following must be taken into consideration:

- Source of water and type: Source of water for any growing system should be natural water or close as much as possible in quality and consistency of what is determined as optimum for the fish species. It should also be devoid of chemicals, pollutants and infectious organisms.
- Water budget and storage: This needs to be calculated, monitored and replenished regularly. Adequate provisions should be made prior to any production activity. As much as possible, acute shortage of water must be avoided because it may lead to water pollution and decrease in oxygen concentration. This will immediately induce stress, affect fish welfare and health and in extreme cases, cause death.
- Water monitoring and analysis should be carried out regularly for key water parameters and indicators to determine water quality before usage. This must be done continuously, at least once daily, and at consistent intervals.
 It is also important to have a record for keeping track of all the historical measurements. The water quality parameters to be monitored include:
 - Physical parameters temperature, pH, dissolved oxygen, salinity, ammonia, nitrite, hydrogen sulphide, alkalinity, hardness, turbidity and suspended solids.
 - Organic chemical contaminants veterinary drugs, antibiotics, hydrocarbon-based chemicals and other pollutants.
 - > Biochemical hazards toxins
 - > Biological contaminants pathogens such as bacteria and viruses.

Life Stage and Species-Specific Considerations

Water quality requirements vary for different species of fish and even for the different stages of their life cycles. The following table presents general water quality.

Table 2 Water quality parameters for catfish and tilapia

Parameters	Catfish	Tilapia	African Bony tongue
Temperature	26°C-32°C (Kashimuddin et al., 2021)	20.2°C – 31.7°C (Leonard and Skov, 2022)	24.5°C-26.7°C (Ofori-Darkwah et al., 2023)
Dissolved Oxygen (DO)	2.91 and 4.85 mg/L (Boyd and Hanson, 2010)	5 and 7 mg/L (Abd El Hack et al., 2022)	4.7-5.0 mg/L (Ofori-Darkwah et al., 2023)
PH	6,5- 8,5 (Fathurrahman et al., 2020)	6-8.5 (El-sherif et al., 2009)	6.0-7.45 (Ofori- Darkwah et al., 2023)
Ammonia	0.34mg/L (Edward et al., 2010)	0.14mg/l (Benli et al., 2011)	<0.01 mg/L (Ofori- Darkwah et al., 2023)
Nitrite	1.19 mg. L-1 (2% of LC50-96h) (de Limal et al., 2011)	0-7 mg/L (Amazon Web Services)	
Nitrate	400 ppm nitrate (Agricultural Marketing Resource Centre)	5-500 ppm (Sallenave, 2016)	
Alkalinity	4.56mg/L (Baldisserotto and Rossato, 2007)	1.6 to 9.3 mg/L (Colt and Kroeger, 2013)	
Water hardness	25-50 mg CaCO3 L- 1(Copatti et al., 2011)	401.33 mg/l to 634.00 mg/l (Choudhary and Sharma, 2018)	
Turbidity	Below 88 (Jayadi, 2022)	200 mg/L (Ardjosoediro and Ramnarine, 2002)	

Catfish Welfare and Water Quality

Catfish is the second most produced farm fish species in Ghana. Most small-scale farmers opt for this species because they can often withstand greater environmental fluctuations. This is due to the presence of their false lungs (arborescents) which help them to breathe in air, unlike most other fish species that depend solely on their gills. Catfish are said to be hardy, but if they are out of water, they undergo high stress which negatively impacts their welfare. Therefore, their hardiness should not be an excuse to ignore welfare practices and they must be kept in optimal water quality conditions.

How to Measure and Correct Water Quality Parameters

Measuring water quality is essential for maintaining a healthy aquatic environment. Farmers can use various testing kits, electronic metres, or send samples to a water quality laboratory for more comprehensive analysis. For use of test kits and metres, follow the instructions provided on the kit for accurate measurements.

Solutions for Out-of-Range Parameters

When any of the water quality parameters fall outside the desired range, farmers need to take appropriate actions immediately to correct the issue. On a general note, after removal of the agent causing the water parameter imbalance, partial/full water replacement with water of desirable parameter can salvage most parameters, this needs to be done in such a way that minimizes stress/shock to the fish. In addition, here are some parameter-specific measures to correct out-of-range water quality parameters:

- Temperature: If the temperature is too high or too low, consider using a
 heater or a chiller to adjust the water temperature to the desired range for
 the specific species you are caring for.
- **pH**: To adjust pH, use pH buffers or pH adjusters. For example, adding sodium bicarbonate (baking soda) can raise pH, while adding phosphoric acid can lower it. Improvised pH buffers like ground crustacean and mollusc shells can also be applied to moderate the pH.

- Ammonia, Nitrite, Nitrate: High levels of ammonia and nitrite can be toxic
 to aquatic organisms. Perform partial water changes to dilute these
 compounds. Beneficial bacteria in biological filtration systems can also
 help convert ammonia and nitrite to less harmful nitrate. Regularly monitor
 these parameters and ensure proper filtration.
- Dissolved Oxygen: Low oxygen levels can lead to stress and health issues for fish. Increase aeration and water movement to improve dissolved oxygen levels. Address sources of oxygen depletion, such as excessive organic matter decomposition or overstocking.
- Total Dissolved Solids and Salinity: High TDS or salinity can indicate excessive
 mineral content. Regular water changes can help reduce TDS, and for
 saltwater systems, use purified water or a reverse osmosis unit to maintain
 appropriate salinity levels.
- Alkalinity and Hardness: Maintain stable alkalinity and hardness levels to prevent pH fluctuations. You can use alkaline buffers to adjust alkalinity and crushed coral or calcium supplements can increase hardness.
- **Turbidity**: Turbid water can be a sign of sediment or organic matter. Address the source of the turbidity and use mechanical filtration to clear the water.

To reiterate, it is beneficial to always refer to species-specific water quality guidelines and adjust water parameters gradually to avoid stressing the aquatic organisms. Regular monitoring of water quality is essential to prevent issues before they become severe. If you encounter persistent problems or are unsure about the appropriate solutions, consult with an experienced veterinarian, aquaculturist, or aquatic biologist for personalized guidance.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Discuss your previous knowledge and experience with good and bad water quality.
- Have you been monitoring water quality? If yes, how?
- Based on what you have learned so far, what issues have you experienced with water quality and how do you intend to improve the water quality on your farm to align with good fish welfare practices?
- How can you better measure water quality on your farm? What parameters are most important to you?

MODULE 6: FEEDING AND FISH WELFARE

This module provides general welfare considerations and guideline in feeding of fish including best practices, feed composition and feed quality.

GENERAL BEST PRACTICES FOR FEEDING

Feeding is generally an important part of the fish life cycle and is a constant activity in fish farms management. However, to ensure optimal fish welfare and health, the following general best practices must be implemented:

- Strive for the most optimal feeding times and feed quantities and avoid starvation periods exceeding 72 hours.
- Fish must always be provided with sufficient and adequate amounts of feed. This includes avoiding underfeeding or overfeeding them. Insufficient feed adversely impacts their growth, productivity and welfare while providing too much can cause poor water quality, which in turn will affect health and welfare.
- Avoid giving feed in unavailable forms, such as excessively large pellets.
- Avoid feeding in a location where smaller fishes are outcompeted, as these
 can result in poor health and welfare of the affected ones. It is important to
 grade fish by size in any of your species to achieve a homogenous group
 and to avoid competition for the smaller fish.
- Also, provide feed formulations in appropriate amounts that are available to all fishes in the farm.
- Ideally, vary the locations periodically where feed is administered within the
 enclosure, to provide mental stimulation for fish, simulate their natural
 environment and avoid overcrowding in feed locations.
- Where possible, farmers can implement systems where animals and their feed are co-produced.

COMPOSITION AND QUALITY OF FEED INGREDIENTS

All ingredients used for fish feed must be of high quality devoid of any form of contaminants and should have good taste and smell. Feed must be nutritionally balanced in terms of the protein content, carbohydrate, fat and oil, and mineral contents. Hormones especially growth hormones-treated feeds should NOT be fed to fishes. For catfish, recommendations for high quality feed consists of about 40-45% protein and it must be highly digestible with an ideal feed conversion ratio of 1:2. Also, fish feed should preferably be in pelleted floating form, and it is important to match the size of the pellet to the fish mouth – indicating that pellet sizes should keep increasing following fish growth.

Table 3 Protein requirement and feed size required for different sizes of tilapia (source: AFJ Manual, 2022)

Fish Size	Crude Protein (%)	Life stage	Feed Size
< 20 g	40 – 45	Fry and larvae (0.01 – <	Powdered
		1 g)	feed
20 – 100 g	38 – 40	Fingerlings (1 – 5 g)	0.5-2 mm
100 – 250 g	33 – 35	Juveniles (5 – 50 g)	2-3 mm
250 – 450 g	32 – 30	Adults (> 50 g)	3-6 mm
> 450 g	28 – 30		

FISH FEED AND SPECIFIC WELFARE CONSIDERATIONS

Use of animals for fish feed: As sentient beings, a key animal and fish welfare consideration is that the number of animals used for feeding in the supply chain should be minimized to reduce their suffering, and limit the reduction and elimination of terrestrial, aquatic and insect animal ingredients. Wild caught fish and animal species that are smaller in size and have a larger individual-to-weight ratio, such as insects and krill, should not be used as feed. To this end, producers where possible must move towards the use of alternative feed products which have the following characteristics:

- Have higher feed efficiency ratios that also maintain good nutrition and health,
- 2) Substitute carnivorous farmed species with herbivorous extractive species.

Use of chicken offal or maggot for fish feed: Feeding fish with chicken offal or maggots is highly discouraged or should be subjected to further treatment to destroy potential pathogens before being fed to fish. Apart from being visually unethical for consumption by the fish and the end-consumers (humans and other animals), it has a high risk of transmitting zoonotic infections with dire health consequences. In future advocacy for country-level and Africa-wide animal and fish welfare regulations, recommendations to ban this practice will be promoted.

Feeding rates: The recommended daily rate for fish feeding is 2-5% of fish body weight. In reality, especially in catfish farming, the fish must be fed to satiation with the last feeding schedule preferably done at 10PM. This practice will limit the risk of cannibalism and predation in most fish farms in Ghana as there are hardly any farms with automatic feeders that can ensure continuous feeding until the next day. Factors affecting food consumption rate include fish health, water temperature, pH, oxygen contents, feed quality in terms of taste, size and palatability, method of feeding, etc. These factors should be monitored at regular intervals, and a log should be kept allowing for evaluations and taking corrective measures if needed.

Feed storage: Feeds must be appropriately stored to prevent exposure to moisture, heat from direct sunlight, mold, and other contamination which may lead to degradation of their ingredients and impact their overall quality and or composition. They must also be stored appropriately to avoid contact with rodents, insects, birds and other animals or parasites.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

Discuss your previous knowledge and experience with good and bad feed. How do you differentiate between good and bad feed for your fish?

- Based on what you have learned, what experiences have you had in the past with sourcing for feed for your fish?
- How do you intend to improve the feeding on your farm to align with good fish welfare standards?
- What local alternatives do we have to poor unethical feeding practices such as:
 - a) Use of smaller animals for fish feed,
 - b) Use of hormones,
 - c) Use of chicken offal and maggots, and
 - d) Use of insects?
- How can we innovate on alternative feeding that meet optimal welfare standards for fish production?

MODULE 7: FISH WELFARE DURING HANDLING AND TRANSPORTATION

This module provides welfare considerations and guidelines for fish handling and transportation.

HANDLING AND FISH WELFARE

The capture and handling of fish on a farm is unavoidable due to the need to carry out various procedures (e.g., vaccination, grading, tagging and slaughter) throughout the production cycle. It is also needed to move fish between facilities, and these include transferring them within the rearing system, transporting them between farms for marketing and slaughter.

Welfare Considerations in Fish Handling

Fish are very sensitive to handling and the removal of fish from water elicits a maximal emergency stress response. Therefore, animal welfare groups and organizations advise that handling should be kept at an absolute minimum, and removal of fish from water should only be carried out when absolutely necessary, for no longer than 15 seconds, unless anaesthetised (Humane Slaughter Association, 2004). Building on this, it is important for the aquaculture industry to continually develop less stressful ways of carrying out on-farm procedures that would involve fish capture, handling and transportation.

Fish sensitivity to handling is particularly dependent on temperature. At high temperatures, they are usually more sensitive, and handling should be avoided. The same applies to very low temperatures, and below zero, where fish should not be handled at all. Poor handling may cause injuries to eyes, fins and muscle, as well as scale loss. It also damages the skin's protective mucous coating, which serves as the primary line of defense against pathogens, thus increasing the vulnerability of fish to disease. Furthermore, all equipment used for handling must be in a good hygienic condition and, if possible, have a plain surface structure to avoid fish injury.

TRANSPORTATION AND FISH WELFARE

Transport of live fish is a multi-step operation consisting of preliminary capture and preparation of animals and transport facilities, harvest of the fish, loading, and conveyance; including maintaining water quality and unloading at the delivery location. These procedures can induce large stress responses from which the fish will take a long time to recover. For example, salmon smolts take more than 48 hours for their levels of cortisol to return to pre-transport levels (Iversen et al, 1998).

Also, according to Fish Count (2019), it is reported that fish have a stress physiology which is directly comparable to that of mammals and birds. Stressful stimuli in this manner have been shown to produce a wide variety of effects on transported fish such as metabolic hormonal and behavioural alterations. They further report that immunosuppressive effects and osmoregulatory problems can activate latent disease organisms and are the major cause of death when fish are handled and transported. Furthermore, for some species, the initial loading of fish into the container is the most stressful component of transport.

Welfare considerations in fish transportation

Methods and equipment used: Various methods are used in the capture and movement of fish within farms, ranging from the use of small nets for individual animals to large nets for larger fish collection. Special fish pumps or pipes are also used for fish movement between ponds or to other tanks for treatment. Each of these methods, however, have their associated limitations. For example, the use of nets can easily cause abrasions, damage and loss of scales, and poorly designed pumping systems can also cause fish injury, as they can often be dropped onto hard surfaces at the point of exit from the pipe.

The popular method for transporting tilapia seed in Ghana is by using oxygen-gassed polyethylene bags partly filled with water, often placed within a sack. Catfish, on the other hand, are typically transported in repurposed plastic containers, such as the Nigerian 50L black gallons or the 25L Frytol gallons. These containers are frequently transported on buses or in vehicles emitting smoke with carbon dioxide or ammonia. The fish may be transported for long distances of up

to 6-12 hours and are often starved to avoid polluting the water. However, these methods are completely unacceptable and totally against the principles of fish welfare. The process is extremely stressful for fish and may negatively affect their survival rates.

Ideal transport systems should include the following:

Transported in specially designated vehicles with insulated holding tanks,
 monitoring apparatus and for very short journeys.

Figure 8 Insulated holding tanks

• Fish seeds should be transported in gassed polyethene bags placed in Styrofoam boxes to minimise movement shocks during transportation. Before transportation, the receiving tanks must be prepared with high quality oxygenated water which will serve as temporary holding tanks. These fish seeds will be observed for about a week to ensure that there are no accompanying parasites/pathogens. After the quarantine period, they can be transferred to receiving and more permanent holding tanks for onward growth.

Plate 13 Photograph of tilapia fingerlings packaged for transportation, Photo Credit: POMEGRID AQUA, Takoradi (Hatchery)

Conditions during transport: Fish transportation exposes fish to a range of stressful stimuli and poor conditions, including overcrowding, inadequate water quality, limited oxygen and accumulation of carbon dioxide and ammonia. Stress can occur at different stages of transport such as during:

- Pre-transport treatment (e.g., draining of ponds, pre-transport starvation to clear the gut).
- Loading (e.g., netting the fish); and
- The journey (e.g., inadequately maintained water quality leading to low oxygen levels and build-up of CO₂ and excretory products).

These can cause irreparable damage to the fish and even death. Whilst stress can be reduced by using anaesthesia or sedation, these are not licensed and acceptable for use in farmed fish. For these reasons, welfare advocates remain opposed to live fish transportation over long distances, instead recommending transport to be kept to an absolute minimum.

Also, the changes in temperature to which fish are exposed during transport are highlighted as a major welfare problem (Fish Count, 2019). Lowering the

temperature under which fish are transported may increase the stocking density that they can tolerate, since lower temperature slows the metabolism (reducing oxygen requirements), but abrupt temperature changes are stressful. On a final note, the WOAH has <u>published general welfare guidelines for fish transportation</u> which are very useful for fish farmers, researchers and other stakeholders.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- How do you currently handle your farmed fish? Please mention all handling methods you use.
- As a fish farmer, have you received training on handling Operational Welfare Indicators (OWIs)? If so, please briefly explain who provided it, when it happened and some examples of how you apply it to your daily routine.
- Based on previous experiences, what is your knowledge of fish transportation? Please mention all transportation methods used.
- As a fish farmer, have you received training on transportation OWIs? If so, please briefly explain who provided it, when it happened, and some examples of how you applied it before and after live fish transportation.

- Is the person responsible for live fish transportation trained for that purpose?
 Does this person know how to act in frequently encountered situations and emergencies during transportation?
- How do you intend to improve the handling and transportation of your farmed fish to align both with good welfare standards? Are there challenges (e.g., economic costs, operational on-farm procedures) preventing you from implementing them?
- How can local innovations in transportation be employed to meet optimal fish welfare standards?

MODULE 8: SLAUGHTERING & FISH WELFARE

This module discusses common slaughter methods and provides pre-slaughter welfare considerations, benefits of humane slaughter of fish and general guidance for humane slaughter methods for fish.

OVERVIEW OF HUMANE FISH SLAUGHTER

Fish slaughter is the process of killing fish, typically after they have been harvested from their growing system. At least 124 billion fish are reared and slaughtered each year for human consumption (Mood et al., 2023). In line with animal welfare standards, slaughter should be humane and not cause unnecessary pain or suffering for the fish. Humane fish slaughter often involves the stunning which means an intentionally induced process that renders fish immediately unconscious and insensible to pain, a condition that must persist until they are dead (Holmyard, 2017; European Union Regulations, 2009). It provides benefits to the slaughter process of fish by making fish easy to handle and causing less injuries to the flesh.

Though various systems have recently been developed to achieve humane stunning and slaughter, inhumane fish slaughter is still predominant especially in Ghana in both commercial and non-commercial fish farms, markets and private homes. Also, many catfish farmed in Ghana are sold live before slaughter and they often suffer prolonged transport without food and sometimes water, while contending with asphyxia, temperature shock, excessive handling and ineffective stunning. Millions of farmed fish are subjected to significant pain and suffering, and this is a major impediment which hinder the export of certified fish products to countries including the United States and Europe.

WOAH's Aquatic Animal Health Code has provided fish welfare guidelines for stunning and slaughter, and all member states are expected to adapt it for their own slaughter guidelines. In response, more humane slaughter methods are emerging, demonstrating progress from unacceptable, inhumane practices. While these newer methods are still evolving, they represent a significant advancement. Electrical stunning in particular is widely accepted due to its rapid process and evidenced minimal physical and biological impact on fish.

Furthermore, it is highly recommended that stunning and slaughter of fish must be conducted by staff that have the technical capacity, training and knowledge to utilize slaughter equipment, can recognize when effective stunning has taken place, and know how and when to re-stun, if necessary. They should receive periodic re-training, upskilling and evaluation of their stunning and slaughter methods, and keep records of these activities in the farm. This is especially important because fish slaughter equipment and methods are still evolving as fish welfare and industry professionals continue to make efforts to ensure a seamless and painless slaughter process.

BENEFITS OF HUMANE SLAUGHTER OF FISH

Carrying out humane slaughter of fish offers several benefits for the fish, farmers and consumers. The following points outline these advantages:

- ❖ Humane slaughter methods improve meat quality and reduce the risk of spoilage (Fish Count, 2019). It minimizes defects like soft flesh, gaping, bruising and scale loss, and improves shelf-life when compared to the traditional less humane slaughter methods (Holmyard, 2017). For example, fish slaughtered with more humane methods will often have firmer, translucent fillets with brighter colour, and the onset and severity of rigor mortis is delayed when compared to the conventional less humane slaughter methods (Humane Slaughter Association, 2019).
- Humane slaughter methods reduce stress and are more likely to improve eating quality and taste for the consumer (Fish Count, 2019).
- Adhering to humane slaughter procedures enhance the ethical value of the fish product, which can potentially add economic value. Consumers driven by ethical concerns usually show preference, and are willing to pay extra, for humanely produced and slaughtered fish (Fish Count, 2019).
- Humane slaughter practices improve compliance with existing local and global food processing and safety standards which ultimately improve the market value of the product.

PRE-SLAUGHTER WELFARE CONSIDERATIONS

Humane Slaughter Association provides recommendations for pre-slaughter welfare considerations which is detailed as follows:

Purging: Purging (also known as fasting) is the act of withdrawing feed from farmed fish prior to slaughter to enable their guts to empty their contents. It reduces the risk of fish being contaminated during processing and maintains the quality and hygiene of final products. The recommended time range for purging is 24 to 48 hours to completely empty fish guts while minimising adverse welfare effects. It is also important to note that the minimum duration of fasting needed to achieve gut clearance may vary depending on water temperature. The higher the water temperature, the less time is needed.

Crowding: This is a common husbandry practice in aquaculture, where farmers reduce the water level or increase fish stocking density. It is usually done during harvesting, as a pre-slaughter procedure. However, it exposes fish to a rapidly increasing density, and as a result, oxygen availability and general water quality can decrease quickly. Its adverse effects can be lessened by slowly reducing densities and providing additional oxygen. Also, overall, crowding should be carried out gradually in steps (rather than crowding all fish all at once) and fish should not be crowded for more than two hours.

Crowding can cause suffering and stress for the fish but, with correct management and careful handling, it is possible to keep stressors to a minimum. For these reasons, there must always be at least, one member of the slaughter team monitoring the crowd pen. It is important that this person, who is solely responsible for the welfare of the fish, can recognize problems and know what action to take to resolve them. Where possible, a crowd pen should be set up so that fish can swim against the tide towards the inlet pipe and preferably into a shaded area. Taking advantage of the natural behaviour of the fish in this way will encourage movement with minimal stress.

Dewatering: This is the phase from the crowding to the stunning/slaughter point when the fish are briefly out of water. Most stunning and slaughter methods

involve removing fish from the water alive and conscious, which stresses the fish since they are out of their natural environment. To reduce the amount of times fish are exposed to air, they should be removed from water, or dewatered, as close to the stunning point as possible. The dewatering process should be designed to move fish gently and promptly to the stunner in the correct orientation. Humane dewatering processes may include using aquatic anaesthetics to sedate fish immediately prior to their removal from the water, use of pumps to move fish from the crowd pen and the use of braille nets.

COMMON FISH SLAUGHTER METHODS

Air Asphyxiation: It is the oldest slaughter method for fish where they are removed from the water and allowed to die through asphyxiation. It is considered inhumane because it can take the fish over an hour to die. Nile tilapia and African sharptooth catfish fall within the category of fish that are quite resistant to hypoxia and take a long time to die. This is especially true for African catfish because they can breathe atmospheric air to some extent, which means they take even longer to die.

Also, the rate at which the oxygen is depleted is dependent upon ambient temperature and the rate of fish activity. For example, at 20 °C, rainbow trout experience brain death in about 2.6 minutes and cease moving in 11.5 minutes. At 14 °C, the same processes require 3 and 28 minutes, respectively. Since the body temperatures of fish vary according to ambient temperature, reducing the temperature of their bodies typically prolongs the time to anoxia and, therefore, the time to insensibility, lengthening the period of distress. Also, fish that evolved from low-oxygen environments take longer to die, while at higher temperatures, fish lose consciousness more quickly. Another major drawback of the asphyxiation method is that meat quality and shelf-life are diminished.

Head strike and stunning: Also known as manual percussion, this is one of the traditional methods for fish stunning and slaughter. In this method, fish are removed from the water and given a sharp blow to the head. If the blow is strong, the animal is slaughtered. If the blow is weak, the animal is stunned. Worse still is

cracking of the skull with a heavy instrument or hitting the skull on a hard surface.

After the blow is engaged, the fish usually bleed.

Percussive stunning is a recommended stunning method that involves a forceful and accurate blow to the head with a blunt instrument. The force required will depend on the size of the fish. The blow should be aimed just above the eyes to impact on the brain. The effectiveness of the stun should be checked, and another blow applied if the fish is not unconscious. The main disadvantages are the unethically violent nature of the method and often stressful handling of the fish before the slaughter or stunning process. In this case, fish undergo pain and rigor, thereby affecting their flesh and taste even after the processing. Also, there are high failure rates in some fish (such as catfish) and they may remain conscious or retain body movement and sensibilities despite such head strikes.

Spiking: Another crude traditional method is spiking, and this involves a sharp spike (such as an ice pick or a sharpened screwdriver) inserted through the head of the fish directly into the brain. The procedure can be applied more accurately in large fish due to the larger size of their brains. In smaller fish, the brain may be difficult to locate and destroy. If it is not destroyed, the fish undergo stress, and some undesirable meat quality changes may result. For best results, the spike should be placed in a position to penetrate it and then pushed quickly and firmly into the skull. The impact of the spike should produce immediate unconsciousness. The spike should then be moved from side to side to destroy the brain. The main disadvantage here is also the unethically violent nature of the method. It is important to note that manual spiking requires a lot of precision and expertise to be efficient. Therefore, if you must choose between manual percussion (striking) and manual spiking, manual percussion is probably easier to implement effectively because it requires less precision.

Live chilling: Live chilling is considered by the aquaculture industry since it has advantages of sustained carcass quality, as reducing muscle temperature close to 0 °C helps delay enzymatic and microbial spoilage processes. It also increases the time for onset of rigor mortis and the resolution of rigor. Another advantage is

that the water can be drained, and the fish placed in an iced container with their temperature lowered. Also, the method immobilizes the fish so they can be more easily handled. However, some believe the method is unacceptable since it prolongs the period of consciousness and does not reduce the animals' ability to feel discomfort. Because chilling slows metabolic rate and oxygen needs, it may prolong the duration until death in some instances, with some cold adapted species taking more than an hour to die.

In Ghana, farmers may use basic crude methods by pouring ice blocks on the fish directly, but this leads to a slow and painful death by causing systemic shock to the fish.

Exsanguination (Bleeding to death): This is the process whereby an animal bleeds to death. Fish are cut in highly vascular body regions, and the process is stressful and painful unless the animals are first rendered unconscious. One advantage for the industry is that bleeding prevents the fish muscles from turning an unpleasant red colour and acquiring a bloody odour. The main disadvantage is that if stunning is not done before bleeding according to behavioural and neural criteria, fish may remain conscious for 15 minutes or more between the times when major blood vessels have been cut and when they lose consciousness.

Bleeding can be accomplished by three major processes;

- Cutting the gills, removing the gills or severing the caudal artery.
- Alternatively, the heart can be pierced or the blood vessels in the tail severed. The animals die from anoxia, and any struggling, which can range from four to 15 minutes, serves to hasten death.

However, some species may live longer – for example, eel brains may continue to process information for 13–30 minutes after being decapitated.

 Additionally, bleeding can be achieved with decapitation and while not encouraged due to the unethically violent nature, it provides the most profuse bleeding and the shortest time before loss of consciousness. **Use of anaesthesia**: An advantage of using anaesthesia is that, once fish are anaesthetised, death can be accomplished more easily by other slaughter methods. Another major advantage is that the fish do not undergo stress, which helps to maintain post-harvest quality. However, the use of anaesthetics has a major concern that some of their compounds may be absorbed into the animal flesh and leave residual chemical traces in the muscle tissues which would be consumed by humans and animals. Also, some species may show adverse reactions for a short time to anaesthetics because they appear to be irritating.

The efficacy of this method may vary depending on dosage and on species. For example, African sharptooth catfish appear to be very resistant to Aqui-S i.e., they have shown to become paralyzed while still being conscious at doses which are known to be lethal to salmonids. For many species, there are still a lot of uncertainties as to whether chemical anaesthesia actually results in a loss of consciousness or whether it only makes fish paralyzed. For this reason, it is considered that chemical anaesthesia could potentially be humane but that there is too much uncertainty to recommend it.

Nevertheless, different countries have different regulations when it comes to preslaughter chemical anaesthesia for fish destined for human consumption. Some countries allow it without any withholding period or maximum residue concentration, and some countries have standards on both of those aspects. All these points back to the uncertainties associated with the use of anesthesia.

Carbon dioxide narcosis: This slaughter method involves dissolving carbon dioxide in the water prior to introduction of the fish. After that, they react violently while their blood rapidly absorbs the gas. The fish may acquire bruises from hitting each other or the sides of the container. The time required to become anaesthetised can vary from less than 4 to more than 100 minutes, and fish may be removed once movement stops, typically after 2-3 minutes. However, there is concern that fish may be rendered immobile by the carbon dioxide before completely losing consciousness and may be bled or eviscerated while still sensible. Also, adding a

lot of carbon dioxide in water lowers the pH, making the water very acidic, which causes distress to fish.

Some countries have used nitrous oxide ("laughing gas") as opposed to carbon dioxide, since it does not cause the strong activity seen in fish immersed in carbon dioxide-saturated water. Nevertheless, the fish recover quickly when removed from contact with the gas.

Electrical stunning: Stunning by use of electricity is known as *electronarcosis*, whereas killing by electricity is known as *electrocution*. Electrical shock using either alternating or direct current has received substantial interest in recent years. Electric stunning is reversible, as normal brain function is disrupted for a short period only. Hence, electronarcosis must be immediately followed by bleeding. Electrocution destroys brain function and, therefore, renders the animal unconscious while stopping the breathing reflex from functioning.

For electrical stunning to be effective, proper current and stun duration must be maintained. Also, water factors such as conductivity and temperature must be properly managed. This method has gained substantial support due to concerns for the ethical treatment of animals and their immobilization (used in other slaughter methods) which needs mechanical or hand processing. It also prevents stress and struggling prior to slaughter, which helps to maintain quality.

A potential risk of electrical stunning methods is inflicting pre-stun electrical shocks (which is, electrical shocks that fish will consciously endure without losing consciousness). Pre-stun shocks can happen for the following reasons:

- 1) The electrical parameters are not adequate.
- 2) The way the electrical shock is applied is not adequate, because:
 - a) The current is applied on a part of the fish body far away from its brain e.g., its tail.
 - b) The current loses its strength because of the resistance of fish bodies if it is applied in such a way that it has to go through the bodies of some fish before reaching other fish.

- c) When performed in water, the electrical parameters are not suited to the water conductivity.
- d) When performed in water, the way the current is applied makes it so that the resulting electric field is not homogeneous.

Although electrical stunning is among the most humane available methods, not all electrical stunning methods are good. Acceptable electrical stunning methods include:

- In-water pipeline electrical stunning
- Head-to-body dry/semi-dry electrical stunning
- In-water batch electrical stunning

Unacceptable electrical stunning methods include:

- Batch electrical stunning in an electrical tank without any water
- Prod electrical stunning with or without any water

Recent advances in electrical equipment design have made substantial improvements in preventing or minimising undesirable physical and biological effects in treated fish. However, use of electronarcosis and electrocution remains a challenge in many developing nations due to its expensive set-up and inconsistent supply of electricity in many of these countries.

Other stunning and slaughter methods include salting to slaughter fish which is also considered an inhumane method, as it exposes the fish to pain and suffering because death is not immediate; use of ammonia baths; shooting which is often done for large fish; using a pneumatic accurate gun which can deliver the required velocity for effective stunning. Generally, the WOAH Aquatic Animal Health Code particularly considers air asphyxiation, ice bath, CO₂ narcosis and exsanguination without stunning, as inhumane. Overall research continues in the search for the most humane slaughter methods for farmed fish and fundamental technical issues still need to be resolved for some species.

OVERVIEW OF SLAUGHTER PROCESSES IN GHANA

In Ghana, various methods are used for commercial fish processing, depending on factors such as the intended use, travel distance to market, and quantity being processed. Large quantities of tilapia purchased at the farm gate after dewatering are immediately packed live in layers of ice blocks within large, sacklined baskets. Some large-scale buyers and processors also use refrigerated vans (cold vans), which similarly result in live chilling and death. For shorter distances and smaller quantities, buyers may either gut live tilapia shortly after dewatering, once the fish becomes immobile, or are transported dead through asphyxiation. These methods are not ideal, as they prolong the period of consciousness and do not effectively minimise the fish's ability to experience discomfort.

Commercial processing of live catfish often involves hitting the head with a strong club and bleeding the fish to death by cutting one of the gills. This does not cause immediate loss of consciousness, and the pain and distress are likely lasting several minutes. African catfish have been shown to remain conscious more than 10 minutes after cutting, while some fish take even longer for loss of consciousness and death. It is important to note that prior to gill cutting, the fish may have experienced removal from water for some time, crowding in bowls and baskets, and rough handling by the handler. Note also that cutting only one of the gills, and not both, will result in a slower bleed-out and a slower death, prolonging the distress further.

GENERAL GUIDANCE FOR HUMANE SLAUGHTER METHODS FOR FISH

Generally, humane methods of fish slaughter are ones that cause an instant death or render fish instantly insensible to pain until dead. This can be possible for both manual and automated processes and it often requires fish to be stunned (rendered instantaneously insensible) before being slaughtered. The fishes should also remain in water until immediately prior to the stunning process. Generally humane methods of fish slaughter include:

- Percussive and electrical stunning machines
- Percussive stunning with a club

- Spiking the brain
- Spiking combined with food-grade fish sedatives (licensed for use in some countries).

To achieve optimal humane slaughter, these methods can be combined as stunning and slaughter. They must also be properly designed for the target species and effectively carried out. Certain systems must be put in place, and these include:

- 1) A well-organized operating cycle that can reduce to an absolute minimum the duration and intensity of stress;
- 2) Incorporation of fish stunning to induce unconsciousness of the fish;
- 3) The need for well-trained personnel who can recognize signs of regained consciousness in the fish species after stunning.

Additional general considerations for humane slaughter as detailed below:

- It is important to note that, when possible, it is better to use manual pneumatic guns rather than fully manual methods. While pneumatic guns have been developed for salmonids, other pneumatic guns originally designed for small mammals or poultry can also be used.
- Manual percussive stunning requires less precision to be effective than brain spiking. Therefore, unless operators have specific skills to correctly implement brain spiking, percussive stunning is preferable if you must choose between the two.

In conclusion, for most commercially important fish species, technologies are now available that allow humane slaughter. It is the responsibility of farmers to apply or adapt manual or automated technologies for fish stunning and slaughter to avoid distress and pain for the fish during the procedures.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Do you slaughter your fish? If yes, what procedure do you currently use?
- Based on what you have learned so far, what mistakes have you made with fish slaughter? Mention which of the slaughter methods you have used.
- How do you intend to improve the slaughter of your fish to align with good welfare standards?
- How can local innovations be adapted to meet optimal welfare standards?

MODULE 9: ENVIRONMENTAL ENRICHMENT AND FISH WELFARE WHAT IS ENVIRONMENTAL ENRICHMENT?

Environmental Enrichment (EE) involves enhancing an animal's living environment to reduce stress, promote species-specific natural behaviours, mental stimulation, and overall well-being. In the context of fish, it refers to creating conditions that mimic their natural habitats and encourage natural behaviours. It can include adding structures or modifying rearing units to create a more natural or complex environment that resembles the fish's natural habitat. It may also include any intentional augmentation of complexity to the surroundings of the animal, such as buildings made of plants and pebbles, music, unusual foods and the introduction of various fish species.

Furthermore, it may include mimicking colours and introducing varied conditions like dark hiding spots and cooler water areas for them to choose from (Leone and Estévez, 2008; Näslund & Johnsson, 2014). This is particularly relevant in captive settings such as aquaculture farms and public aquariums (Zhang et al., 2020a). The challenge is figuring out the kind and quantity of environmental enrichment that fish prefer, and this can be aided by knowledge of their sensory abilities. To get started, we must ensure that each potentially enriching material is pertinent to the biology and preferences of the species. For instance, some fish may prefer hiding, while others may prefer swimming against the flow of the water (Zhang et al., 2020a).

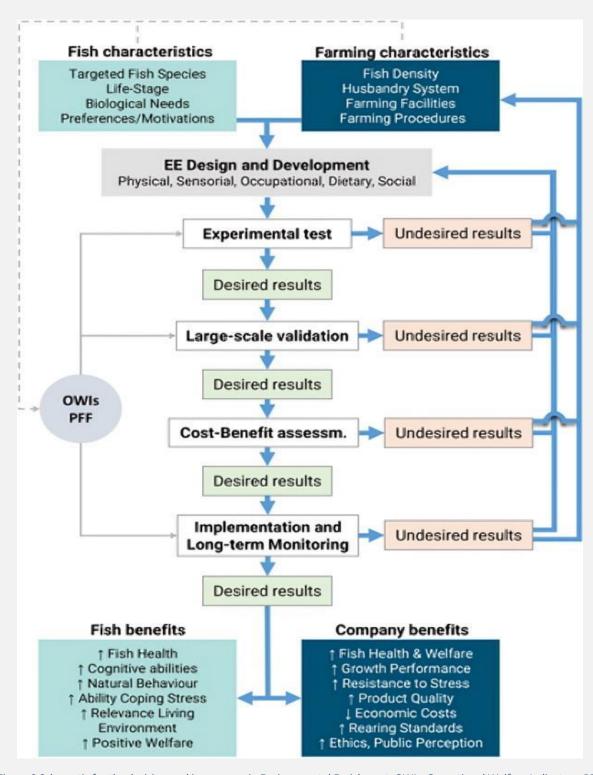


Figure 9 Schematic for the decision-making process in Environmental Enrichment; OWIs: Operational Welfare Indicators; PFF:

Precision Fish Farming; (Source: Arechavala-Lopez et al., 2021)

TYPES OF ENVIRONMENTAL ENRICHMENT

Näslund & Johnsson (2014) outlined commonly recognized spheres of enrichment that can be incorporated into farm enclosures for aquatic animals. Producers should strive to achieve enrichment inclusion in each of these areas where possible.

- Social enrichment This is when animals experience the correct amount and type of contact with other fish or animal species. This includes sufficient access for social species and sufficient distance for mutually aggressive or cannibalistic species.
- Occupational enrichment This includes physical and psychological stimulation that allows for the expression of behaviours that promote psychological well-being. This can involve play, interactive feeding opportunities and sufficient room to swim freely.
- Physical/structural enrichment This includes modification of housing environments to include structural complexity, shelter and visual stimulation. This can include adding silt, sand or other incubation substrates to the floor which allows animals to burrow.
- ➤ **Sensory enrichment** It aims at stimulating the fish's senses through the use of different stimuli such as light, sound or odour (Arechavala-Lopez et al., 2019) which is a diversity of visual, auditory, olfactory, tactile and taste stimuli.
- Dietary enrichment It involves providing a varied and balanced diet to meet the fish's nutritional needs and promote overall health and well-being. The use of feed is enhanced with appropriate nutrients, the amount and variety of food available, feeding frequency and/or delivery system.

These different types of environmental enrichment can have positive effects on fish physiology, health and survival, ultimately improving their welfare.

BENEFITS OF ENVIRONMENTAL ENRICHMENT

Environmental enrichment (EE) has been shown to have several benefits for fish welfare, if applied correctly. These are explained as follows:

- It improves post-stocking survival, and foraging efficiency, reduces fin damage, and promotes social cohesion in fish farms (Rosburg et al., 2019; Huysman et al., 2019).
- It can improve various aspects of fish biology, including aggression, stress, energy expenditure, injury and disease susceptibility (Arechavala-Lopez et al., 2019; Zhang et al., 2020b).
- It can have positive effects on fish physiology, health, survival and general welfare.
- It improves the physiological state and behaviour of fish, serving as an indicator of their well-being (Oliveira et al., 2022). This is because it provides new sensorial and motor stimulation to help meet their behavioural, physiological, morphological and psychological needs, whilst reducing stress and frequency of abnormal behaviours (Arechavala-Lopez et al., 2021).
- It also increases spatial use of the tank and enhances growth rate in fish (Zhang et al., 2020a).
- Environmental enrichment enhances the fish's surroundings to avoid negative welfare (like stereotypical behaviour and chronic stress) and encourage positive welfare (natural behaviour display and positive emotions).
- Some examples from scientific and evidence-based resources show the impacts and benefits of environmental enrichment. These include:
 - Adding structural environmental enrichment to rearing environments has proven positive in reducing aggression, interactions with net pens and fin erosion in juvenile seabream (Zhang et al., 2021).

- Intraspecies aggression in fish can be reduced with increased levels of physical enrichment (Zhang et al., 2020b).
- Occupational enrichment, such as providing opportunities for fish to engage in natural behaviours can help fish cope with acute stressors (Arechavala-Lopez et al., 2019).

Overall, environmental enrichment has the potential to improve fish welfare in aquaculture by enhancing their well-being, reducing stress and promoting natural behaviours. It often requires aqua-ecosystem and biodiversity management, as well as the use and application of local and traditional knowledge (Schweiz et al., 2015; Aubin et al., 2017).

SPECIES RECOMMENDATIONS FOR ENVIRONMENTAL ENRICHMENT Catfish

Generally, key recommendations for the environmental enrichment of catfish include provision of shelter structures and floating pond covers, use of dark tank colouration and provision of feed in dry crumbles at the fingerling stage, with night feed preferred at the adult stage. As adapted from the Aquatic Life Institute (ALI), key recommendations for environmental enrichment of catfish have been explained in Table 1 below.

Table 4 Environmental Enrichment Recommendation for Catfish Species

African catfish (Clarias gariepinus)		
Enrichment Category	Juvenile	Adult
Enclosure Colouration	For higher survival and better growth in fry, provide black tanks (FishEthoBase).	Not enough information is available currently. Therefore, we default to the species' 'natural' conditions at this stage.
Substrate Provision	For the most natural solution, provide vegetation or mud banks (FishEthoBase).	For the most natural solution, provide mud, shale, san, and vegetation (FishEthoBase).
Lighting	To accommodate preference in fry and for lower stress in juveniles, provide ≤15 lux. For	For lower aggression under light intensities of 0.002-1.4 µmoles/m2/s, provide blue light.

	juveniles, 24- hour photoperiod is stressful, stress decreases and growth increases with decreasing photoperiod. Natural photoperiod is 9-15 hours. (FishEthoBase).	Natural photoperiod is 9- 15 hours. Provide access to natural (or at least simulated) photoperiod and daylight. (FishEthoBase).
Water Augmentation	For better growth in fry, provide shallower than deeper tanks (14.5 diameter-to-depth ratio or 0.1 m2 x 0.03 m depth) (FishEthoBase).	Provide variations in the direction and the velocity of the water inlet, depending on the life stage. Depth: Provide at least 2-4 m, ideally up to 10 m or more, bearing in mind the planned stocking density (FishEthoBase).
Structures	For better growth in juveniles, install bamboo poles in ponds which probably enable periphyton growth which serves as additional food (FishEthoBase).	African catfish cultured in a coupled aquaponic system with basil showed a reduction of injuries and agonistic behaviour when coupled with high plant density compared with low plant density and control conditions (no plants).
Shelter	Shelter structures reduced juvenile cannibalism (Hecht and Appelbaum, 1988; Hossain et al., 1998). Enrichment with shelters probably increases the value for fry, but this may cause attacks and chases to establish territories. (FishEthoBase). Must be carefully monitored.	For the most natural solution, provide vegetation or mud banks; alternatively, provide artificial shelters inside the system or outside (e.g., black plastic shade material, black nylon shade cloth netting, aluminium roof plates. (FishEthoBase).
Feeding System	Make sure to provide sufficient feed from ca 4-8 days after hatching. Self-feeders could	Tryptophan- supplemented food was found to reduce confrontations (Neto &

prevent stressful food competition (FishEthoBase).	Giaquinto, 2020). Install a self-feeder and make sure all Nile tilapia adapt
	to it. (FishEthoBase). Provide sand and mud and bamboo poles so that individuals may search for food. (FishEthoBase)

Tilapia fish

Environmental enrichment strategies for tilapia fish species have been studied to improve their behaviour and welfare in captivity. Studies have shown that structural environmental enrichment such as the use of plant-fibre ropes or physical structures can enhance cognition, exploratory behaviour and brain physiological functions in tilapia fish (Torrezani et al., 2013). Enriched environments have shown the reduction of aggression and increased hierarchical behaviour in tilapia fish (Arechavala-Lopez et al., 2020). As adapted from the Aquatic Life Institute (ALI), key recommendations for environmental enrichment of Tilapia fish have been elucidated in Table 2 below.

Table 5 Environmental Enrichment Recommendation for Tilapia Fish Species

Nile tilapia (Oreochromis niloticus)		
Enrichment Category	Juvenile	Adult
Enclosure Coloration	Not enough information is available at this time. Therefore, we default to the species' 'natural' conditions at this stage.	Maia & Volpato (2016) showed that it takes at least 10 days of testing to find the colour preference for Nile tilapia, and that green and blue are the most preferred colours by the species.
Substrate Provision	Enrichment with e.g. river pebbles and plastic kelp models probably increases the value for juveniles, but this may cause more intense fights to establish territories (FishEthoBase).	Males choose to make their nests in sand substrate when compared to other substrates such as stones. Individuals presented equal frequency of total

	Must be closely	attacks whether they
	monitored.	were being kept with or without substrates, but fewer highly intense attacks were observed in animals kept with the substrate. For the most natural solution, provide sand and mud; alternatively, provide gravel. Bamboo poles also increase growth (FishEthoBase).
Lighting	Increased light intensity (280- 1390 lx) reduces aggressive interactions between pairs of juvenile males. Natural photoperiod is 9-15 hours. Provide access to natural (or at least simulated) photoperiod and daylight. (FishEthoBase).	Blue light reduces stress by preventing the confinement-induced cortisol response (Volpato & Barreto, 2001). Natural photoperiod is 9-15 hours. Provide access to natural (or at least simulated) photoperiod and daylight. Avoid 1,400 lux, as it increases aggression compared to 280 lux. (FishEthoBase).
Water Augmentation	Depth: Provide at least 2-6m, ideally up to 20 m, bearing in mind the planned stocking density. Individuals should be able to choose swimming depths according to life stage and status. (FishEthoBase)	Depth: Provide at least 2-6m, ideally up to 20 m, bearing in mind the planned stocking density. Individuals should be able to choose swimming depths according to life stage and status. (FishEthoBase)
Structures	An enriched environment increases resource value which in turn prompts more intense fights (FishEthoBase).	Fish cultured in environments enriched with artificial water hyacinth and shelter presented higher latency to trigger confrontations and the confrontations were less

		intense in the section with enrichment items (Neto & Giaquinto, 2020).
Shelter	An enriched environment increases resource value which in turn prompts more intense fights (FishEthoBase)	For the most natural solution, provide roots or submerged branches, bushes, or trees; alternatively, provide artificial shelters inside the system (e.g. artificial reef) (FishEthoBase)
Feeding System	Make sure to provide sufficient feed from ca 4-8 days after hatching. Self-feeders could prevent stressful food competition (FishEthoBase).	Tryptophan- supplemented food was found to reduce confrontations (Neto & Giaquinto, 2020).
		Install a self-feeder and make sure all Nile tilapia adapt to it. (FishEthoBase)
		Provide sand and mud and bamboo poles so that individuals may search for food. (FishEthoBase)

In conclusion, environmental enrichment is a powerful tool for enhancing fish welfare by providing opportunities for species-specific behaviours, mental stimulation, and improved overall health. Recognizing the importance of environmental enrichment in captive settings can contribute to the ethical treatment of fish and the sustainability of aquaculture practices. Regular research and collaboration between scientists, aquaculturists and conservationists will continue to advance our understanding of effective enrichment strategies.

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- > Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

- Have you heard about or tried "Environmental Enrichment" before now?
 What was your experience like? What enrichments do you (or someone you know) currently use?
- Based on your current knowledge, how do you intend to improve the environmental enrichment of your fish to align with good welfare standards?
- How can local innovations and traditional knowledge in the environment be employed to meet optimal welfare standards?

MODULE 10: FISH HEALTH AND WELFARE

ANIMAL HEALTH AND WELFARE

Animal welfare is defined as a state of the animal, the treatment it receives from animal care, animal husbandry, humane treatment and how an animal is coping with the conditions in which they live (Animal Welfare Institute, 2018). Animal Health can also be defined as the absence of disease and the normal functioning of an organism and normal behaviour (Ducrot et al., 2011). From the above definitions, it is evident that the concepts of animal 'health' and 'welfare' are different but very much linked to each other. For example, an animal in a good state of welfare is considered healthy, comfortable, well nourished, safe, able to express innate behaviour and is not suffering from unpleasant states such as pain, fear and distress.

The main difference is that animal health largely focuses on the occurrence, impact and treatment of diseases, infections and sub-optimal health conditions, while welfare incorporates the sentience and mental complexity of animals which includes their ability to feel emotions, have needs, be conscious and their ability to adapt to domestication without negatively impacting their freedom of expression of natural behaviours (Nicks & Vadenheede, 2014). Though varying in approach to well-being, they mutually impact each other and are both integral to the overall optimal well-being and livelihood of animals. Good animal welfare especially for farmed animals encompasses disease prevention, appropriate shelter, management, nutrition, humane handling and humane slaughter (Animal Welfare Institute, 2018). Therefore, the idea of welfare remains an important element in addition to traditional animal health concerns (Nicks & Vadenheede, 2014).

BIOSECURITY FOR FISH HEALTH AND WELFARE

Biosecurity is a set of practices to minimise the introduction, establishment and spread of pathogens. It entails a set of consistent and systemized practices that minimise the risk of introducing an infectious disease and/or spreading it to the animals within or outside a farm or facility. It also reduces the risk of diseased

animals or infectious agents leaving a facility and spreading to other sites and to other susceptible species (Yanong & Erlacher-Reid, 2012). These practices also reduce stress to the animals, thus making them less susceptible to disease, and improving their overall welfare and wellbeing. According to Yanong and Erlacher-Reid (2012), the major goals of bio-security are:

- Effective animal management through acquiring healthy fish stocks and optimizing their health and immunity through good husbandry.
- Management of pathogens by preventing, reducing or eliminating pathogens.
- Management of people by educating, training and managing movement of staff and visitors.

The ease with which a specific pathogen can enter a fish farm, spread from one system to another, and cause disease depends on many factors. These include the fish species, their immune status, their condition (with reference to welfare and well-being) and life stage. It also depends on environmental factors such as the water quality and chemistry, characteristics of the pathogen such as biology and life cycle, presence of potential disease hosts or reservoirs and survival on inanimate objects or fomites. Finally, it depends on the workers' skills, understanding, husbandry practices and compliance with bio-security principles and protocols (Yanong & Erlacher-Reid, 2012).

Many disease agents (live or dead, animate or inanimate) may come in contact with fish or their pond water on farms and have the potential to carry and spread diseases. Farmers need to be prepared to establish bio-security measures against such agents. These agents include:

- 1) Fomite (inanimate objects): which may be nets, buckets, siphons, footwear, clothing, vehicles, haulers, containers, etc.
- 2) Vectors (living creatures): which may be new livestock, predatory birds, pets and people.

3) Direct contact between fish: with dead or dying fish, or other aquatic animal, contaminated feed and water sources: on-site sources, water reuse, transportation sources (Sahu et al., 2020).

Benefits of Biosecurity on Fish Farms

As noted by Aarattuthodiyil and Wise (2017), it can be simply stated that biosecurity offers protection from exposure to diseases, and is the most cost efficient and effective means of disease control available. Generally, implementing bio-security measures will contribute to achieving the following goals:

- Reduce the risk of disease transmission and minimise the spread of the disease within the same farm or from one farm to another.
- Promote aquatic animal health.
- Prevent new diseases in ponds.
- Protect human health (zoonoses, food safety) (Sahu et al., 2020).
- Reduce stress and improve fish welfare and well-being.

Lack of a bio-security plan in the face of a disease outbreak could result in fish morbidity/mortality, increased cost of treatment and diagnosis – all of which lead to poor fish welfare, reduced quality and value of products, damaged market reputation and fish facility closure.

The consequences of infectious disease outbreaks can be catastrophic, especially in intensive farming systems like recirculating systems and hatcheries, due to the inherently expensive nature and operational intensity. These intensive aquaculture practices create bigger disease risks for the producers, and it is risky to ignore biosecurity. A single disease outbreak has the potential to put a farmer out of business and in huge financial debt. Therefore, since aquaculture operations will always have to deal with pathogens, it is a sensible approach to adopt bio-security practices, as disease prevention is better than cure (Aarattuthodiyil and Wise, 2017). Also, with the international nature of trades in today's world, farmers who can demonstrate the establishment and integration

of documented bio-security measures and systems on their farm are more readily accepted in international trade markets (Aarattuthodiyil and Wise, 2017)

Common bio-security measures and practices

Bera et al. (2018) and Ernst et al. (2017) share a comprehensive list of good biosecurity measures and practices to be adopted by fish farmers. These include the following:

- Providing clean pathogen-free water source at all times for land-based fish farms.
- Restricting movement of fish from other farms or one farm to the other, especially from those of poorer health.
- Limiting visits to the fish farm or access to a farm site i.e., by setting up gates and fences.
- Fixing clear signs to direct traffic within and outside the farm where necessary.
- Establishing and implementing strict sanitary measures such as defining sanitary units, cleaning and disinfection for people entering the farm, using protective and disinfected clothing, foot dips and hand hygiene.
- * Restricting movement of tools and culture organisms.
- Fish stock health should be maintained by keeping stock stress to minimum level and maintaining optimum water quality.
- Minimise the pest and disease risk associated with stock movements onto, within and off your farm by maintaining appropriate quarantine procedures during stock movement.
- Minimise the risks of pests and disease entry associated with incoming water through proper treatment.
- Preventing the entry and spread of pest and disease by assessing all equipment, vessels and vehicles entering the farm through proper biosecurity procedures like disinfection of equipment, controlled use etc.
- * Records should be kept of the workers and visitors, and all the workers should be trained on biosecurity standards.

- Food-borne disease organisms can be minimized by proper handling and storage.
- Implementing pest control management by controlling or eradicating predators, wildlife, scavengers and other organisms from farm areas.
- Wastewater and solid waste should be treated appropriately before disposal.
- ❖ Maintain record for all aspects of bio-security plan (staff training, workers and visitor's log, inspection and maintenance of farm infrastructure).
- Regular monitoring, surveillance and audit of the bio-security measures should be implemented throughout the farm.
- ❖ Development and implementation of an appropriate bio-security management plan (Bera et al., 2018; Ernst et al., 2017).

FISH DISEASES AND IMPACTS

Disease outbreaks are a key menace in aquaculture, capable of causing huge economic losses to the farms from increased mortality, decreased growth and productivity, and higher production costs. Due to its catastrophic impacts on aquaculture, FAO (2020) regarded it as one of the major obstacles to the growth and development of sustainable aquaculture. The major barriers to effective prevention and control of diseases in fish farms include poor aquaculture disease management training, inadequate effective drugs within the reach of the farmers, and high cost of quality feeds, high cost of drugs and treatment and poor financial support. These indicate the need for fish farmers and managers to be well trained in aquaculture disease management, reduce the occurrence of disease outbreaks and increase their farms' economic performance.

Numerous infectious diseases are significant to global aquaculture, and they are often caused by viruses, bacteria, parasites, fungi, or pests (Cascarano et al., 2021). They have the capacity to spread through the movement of infected host species, have devastating effects on aquaculture productivity and pose greater challenges for aquaculture development (Subasinghe et al., 2009). Fish diseases undermine sustainable development goals, especially in developing nations, by

lowering income earnings, causing job losses, endangering food availability and posing a threat to nutrition and food security (World Bank, 2014). Because aquaculture in developing nations is typically small-scale and rural, the vast majority of infections go undetected, untreated and unregistered, placing a heavy burden on populations trying to overcome poverty (Mukaila et al, 2023).

Diseases of fish and other animals may be from infectious organisms such as bacteria, virus, fungi, parasites and protozoa, or may be from miscellaneous non-infectious origins.

Common bacterial diseases of farmed fish in Ghana include:

- Streptococcosis is caused by streptococus spp. This disease affects tilapia
 and trout leading to lethargic movement, erratic swimming, dorsal rigidity,
 hemorrhagic anus, damaged internal organs, distended abdomen and
 ascitic fluid, pale liver and swollen kidney.
- Mouth Fungus is caused by the bacterium Flavobacterium columnaris and characterized by white cotton-like patches around the mouth and discoloured patches on their bodies, sloughing scales and eroded gill filaments. Columnaris disease is prevalent in warm-water fish, especially during warmer months and when fish are under stress. It may be fatal due to the production of toxins and the inability to eat.
- Red pest is characterized by bloody streaks on the body, fins, and/or tail
 which may lead to ulceration and possibly fin and tail rot in extreme cases.
- Mycobacteriosis is caused by the bacterium Mycobacterium piscium and characterized by emaciation, hollow belly, and possibly sores. The main cause is usually overcrowding or high stocking density in unkept conditions.
- Dropsy/Bloat is caused by Aeromonas and characterized by bloating of the body, and protruding scales. It affects the kidneys, causing fluid accumulation from renal failure.
- Tail Rot and Fin Rot is caused by Aeromonas and characterized by disintegrating fins that may be reduced to stumps, exposed fin rays, blood on edges of fins, reddened areas at the base of fins and skin ulcers with

- grey or red margins, cloudy eyes. If the tank conditions are not good, an infection can be caused by a simple injury to the fins/tail.
- Edwardsiellosis is an acute to chronic systemic disease in fish characterized by exophthalmia, ascites, hernia and severe lesions of the internal organs.
- Pseudomonas infection is caused by Pseudomonas spp, leading to various symptoms, including fin erosion and redness, scale sloughing, skin lesions and darkening, petechial hemorrhage, pale gills, abdominal distension and exophthalmia.
- Ulcer caused by bacteria, Haemophilus sp and characterized by loss of appetite and slow body movements.
- Micrococcus luteus is an emerging opportunistic pathogen in fish, causing various diseases like skin infections, gill damage, exophthalmia, hemorrhages in muscles and abdominal fluid accumulation. While generally harmless, it can become pathogenic in stressed or immunecompromised fish.

Common fungal diseases of farmed fish in Ghana include:

- Saprolegniasis causes tufts of dirty, cotton-like growth on the skin and can cover large areas of the fish including fin, skin and gills. It may also cause brownish patches on the skin, damage fins including lesions, ulcerations and discoloured body, erosion of skin, fins and reddening around affected area. These fungal attacks always follow some other health problems like parasitic attacks, injury, or bacterial infection. Eventually, if left untreated, the fungus will continue to eat away at the fish until it finally dies.
 - Once a fungal disease occurs, it is usually very challenging to manage or cure. Therefore, the most effective approach is always to prevent them from occurring in the first place.
- Gill rot disease also called Branchiomycosis is caused by Branchiomyces demigrans and Branchiomyces sanguinis. It mainly affects the gill area (blotchy gills), leading to impaired exchange of oxygen and osmoregulatory deficiency leading to respiratory distress.

Common parasitic diseases of fishes in Ghana include the following:

- Argulosis is caused by Argulus (Fish louse) which is a flattened mite-like crustacean that attaches itself to the body of the fish. They irritate the host fish which scrapes itself against objects, may have clamped fins, become restless and may show inflamed areas where the lice have been.
- Velvet or Rust is a highly contagious and fatal disease characterized by yellow to light brown "dust" on the body, clamped fins and respiratory distress (breathing hard).
- Anchor worms (Lernaea) are crustaceans whose young are free-swimming and burrow into the skin, go into the muscles and develop for several months before showing, releasing eggs and dying. The holes left behind are ugly and may become infected. The fish scrapes itself against objects, and whitish-green threads may hang out of the fish's skin with an inflamed area at the point of attachment.
- Nematoda are threadworms hanging from the anus which infect just about anywhere in the body but only show themselves when they hang out of the anus. A heavy infestation causes hollow bellies.
- Erasmus is a parasite like the anchor worm but is smaller and attacks the gills instead of the skin. Also, the fish scrapes itself against objects, and whitish-green threads hang out of the fish's gills.
- Fluke infestations also cause the fish to scrape itself against objects, causing the skin to be reddened. In some cases, mucus covers the gills or body, and the gills or fins may be eaten away.
- Leeches are external parasites visible on the fish's skin, which affix themselves to the body, fins, or gills of the fish. Usually, they appear as heart-shaped worms attached to the fish. Most leeches live in freshwater but there are a few species in the marine ecosystem. They are capable of causing anaemia, lethargic movement, pale gills, increased respiration and negative buoyancy. Large leeches may cause ulcers in fish.

• Ichthyophoniasis or Ichthyosporidium disease is a fungal-like disease but caused by a parasite *Ichthyosporidium hoferi*. It manifests itself internally, primarily attacking the liver and kidneys, but may spread everywhere else. Symptoms include sluggishness, loss of balance, hollow belly, external cysts and sores.

Common Protozoan diseases of fishes in Ghana

- Ich is a protozoan called *Ichthyophthirious multifiliis* and it is also known as white spot disease. It causes salt-like specks on the body fins, excessive slime, breathing problems, clamped fins, and loss of appetite.
- Costia is a rare protozoan disease that causes a milky cloudiness of the skin.
- Trichodina disease, also known as Trichodinosis, is a parasitic infection in fish
 caused by protozoan parasites called *Trichodina spp*. Typical signs of the
 disease include skin and gill damage, respiratory distress, loss of appetite
 and loss of scales.
- Hexamita is an intestinal flagellated protozoa that attacks the lower intestine and is characterized by the loss of appetite.
- Neon Tetra disease is caused by the sporozoa Plistophora hyphessobryconis. It causes muscle degeneration leading to abnormal swimming movements.
- Glugea and Hnneguya are sporozoans which form nodular large cysts on the fish's body and release spores. The fish bloat up, with tumour-like protrusions, and eventually die.
 - Whirling disease caused by Myxosoma cerebralis causes blackening of the tail and deformity of the anal region.
 - Knot disease caused by protozoa, Myxobolus exiguous and Bio-disease caused by protozoa Myxobolus pfcifferi with symptoms such as large boils of varying sizes appearing in several parts of the body.
 - Myxosporidisis caused by infection of Myxosorida. Cysts appear on the body, internal tissues and organs. Infected fish becomes weak and scales may become perforated and fall off.

Viral diseases of fish in Ghana

- Infectious Spleen and Kidney Necrosis Viruses (ISKNV) are a group of viral agents in the genus Megalocytivirus, family Irodoviridae. ISKNV disease can be pandemic and is capable of killing 50-100% of the infected fish population. Virus thrives in temperatures of 20-32°C. However, 25°C is more conducive for them. Infection by ISKNV causes epidermal lesions in which petechial hemorrhages and abdominal edema are prominent features.
- Lymphocystis is a virus which affects the cells of the fish and causes nodular white swellings (cauliflower) on fins or bodies. It can be infectious but is usually not fatal.
- Tumours can be caused by a virus or cancer, but most tumors are genetic. The genetic tumours may be caused by too much hybridization, common amongst professional breeders. It is important to note that practically all tumours are untreatable, and if the fish is in distress, it should be culled and slaughtered.

General treatment options

For many, diseases treatment may vary and include disinfecting of the fish tank, and treatment with antibiotics, metronidazole, copper or malachite green, acriflavine (trypaflavine), para-chloro-meta-xylenol, thiabendazole, Trichlorfon, potassium permanganate, common salt solution, quinine hydrochloride, quinine sulphate, or quicklime – all in the right dosage. In other cases, the best thing to do is to cull, slaughter or destroy the infected fish. If unkempt conditions or overcrowding is the suspected cause, it is required to take necessary measures. It is important to note the following when treatment interventions are being applied to disease conditions in fish:

1) Antibiotics may disturb biological filtration in the tank. Therefore, it is also recommended to monitor either ammonia or nitrite levels of water or use an ammonia remover to be sure that the level of ammonia does not exceed the desired limit.

- 2) With larger fish and light infestations, parasites such as lice can be picked off with a pair of forceps.
- 3) Some chemicals used for treatments may pose risks to fish and even human health. Therefore, ensure that they are used in the right dosages and ensure to wear protective clothing and gloves.

Miscellaneous non-infectious health issues may be caused by:

- Congenital abnormalities which usually occur when professional breeders are trying to acquire certain strains in breeds.
- Physical injuries.
- Constipation which is mostly caused by diet.
- Poor nutrition (Okhueleigbe, 2021).

Disease reporting

Availability of data on diseases in both public and private facilities is in the public interest and important to monitor welfare of animals. All farms must record and retain records of disease, treatments, transport, mortality rates and causes of mortality for all animals in their care and must use these records actively to further improve conditions within their production. As a precaution, you should report any suspected serious disease or unusual mortality even if you have not identified the infectious disease.

ANTI-MICROBIAL RESISTANCE

Anti-microbial resistance (AMR) is the ability of bacteria, viruses, fungi and parasites to resist the activity of medications (antimicrobials) designed to kill or inhibit them. These medications include antibiotics, antifungals, anti-parasitic drugs and antivirals. This resistance allows pathogens to survive and grow in the presence of antimicrobials. This leads to increased treatment period and costs, increased risk of disease spread, severe infections and increased mortality in terrestrial animals, aquatic species and humans (Towers, 2014; WHO, 2021).

Although AMR develops naturally over time, antimicrobial misuse and overuse in humans and animals remains a major pre-disposing factor (Cabello, 2006;

Chowdury et al, 2022). This inappropriate use is linked to lack of AMR and antimicrobial stewardship awareness and lack of diagnostic capacity (mostly in low-and middle-income countries (LMICs). This affects proper identification of causative pathogens in diseased animals and anti-microbial prescriptions (Henriksson et al., 2018; Adekanye et al., 2020). Another contributing factor is the use of antibiotics as prophylactics in disease prevention – especially in intensive factory farm settings in aquaculture production (Cabello, 2006). Furthermore, intensive aquaculture, poor animal welfare practices, poor biosecurity can increase the risk of infection in fishes and consequently increase antibiotic use (Cabello, 2006).

Antibiotics are typically administered to fishes through feeds, in baths, or via injections (Chowdury et al., 2022). These methods can lead to the accumulation of antibiotic residues in the fishes and their aquatic ecosystems. If the proper withdrawal periods are not observed after the administration of antibiotics, consumers of such fishes will ingest antibiotic residues at sub-optimal doses and this can facilitate AMR development and other health risks (Heuer et al., 2009; Sapkota et al., 2008). Furthermore, these residues and resistant bacteria can be transferred between the aquatic and terrestrial animals through the environment and waterways (Goldburg & Naylor, 2005; Naylor & Burke, 2005; Chowdury et al, 2022).

How does AMR spread from animals to humans?

Resistant bacteria can spread from animals to humans through the following routes:

- Via contamination of food animals or animal products e.g., from poor anti-microbial stewardship (misuse or overuse).
- Occupational exposure for farm workers and fish keepers, abattoir workers, veterinary surgeons and health workers.
- Environmental transfer can also occur upon contamination with resistant bacteria, resistance genes (which can be transferred from resistant pathogens to non-resistant ones), anti-biotic residues, and

• Recreational activities including fishing and swimming (Towers, 2014).

Impact of AMR

Antimicrobials are essential in intensive animal agriculture and aquaculture. Antibiotics including Oxytetracycline, amoxicillin and sulphadiazine trimethoprim are used extensively in aquaculture to treat or prevent fish diseases, thus maximizing productivity (Chowdury et al., 2022). However, misuse and over-use leads to AMR which causes treatment failure and affects aquaculture fish production and welfare (Schar et al., 2020).

Furthermore, antimicrobial misuse in aquaculture results in wide contamination of the environment with anti-microbial residues via water distribution systems (Schar et al., 2020). These residues can affect the environment's microbiome and, consequently, its regulatory and supporting activities in ecosystems (Sarmah et al., 2006; Larsson et al., 2018). Also, aquaculture systems with high antimicrobial use may serve as reservoirs for anti-microbial resistance genes, hence facilitating AMR development in animals and humans (Schar et al., 2020). We should also consider that authorized antibiotics for aquaculture species are scarce globally, hence, their efficacies should be maintained.

COMBATING AMR

How can aquaculture farmers contribute to AMR prevention and control while addressing the increasing demand for seafood animals without compromising food safety, environmental health, human health and animal health and welfare?

The FAO action plan on AMR 2016–2020 recommends prudent use of antimicrobials and effective bio-security practices (FAO). The main recommendations include:

- 1. Prudent and responsible use of antimicrobials to preserve their efficacies.
- 2. Provision of clean, safe and disease-free aquatic systems to prevent infectious disease incidence and reduce antimicrobial use.
- 3. Proper routine monitoring of resistance during disease outbreaks.

- 4. Proper animal welfare standards should be adopted and maintained as they ensure better immune systems in animals, thus preventing infections, minimising outbreaks and reducing antimicrobial use.
- 5. Routine removal of antibiotic residues in water via appropriate adsorption techniques, filtration, biological methods, sedimentation and flocculation (Homem & Santos, 2011).
- 6. Vaccination of aquatic food animals for infectious disease prevention. For example, oral fish vaccines are effective against many aquatic diseases (Newaj-Fyzul & Austin, 2015).
- 7. Probiotics should also be considered in infection prevention and control. For example, probiotics are potential alternatives in controlling pathogens such as *Vibrio harveyi*, a major health threat in aquaculture (Chabrillon *et al.*, 2005).
- 8. Immunostimulants can also be considered for use. Examples are β -1, 3 glucans which are reportedly effective alternatives against various aquatic diseases like vibriosis, enteric redmouth, aeromonadiasis, pasteurellosis, and Hitra disease (Ngamkala et al., 2010).

Q&A SESSION

In a facilitator-led training session, fish welfare trainers/facilitators should provide opportunities for trainees to ask questions and engage in discourses on the module, while the facilitator provides answers.

If you are reading the training manual in a personal capacity, you can share your questions in the following ways to receive answers and further support, where necessary:

- Send your questions to contact@animalwelfarecourses.com or info@onehealthdev.org.
- > Share your questions on the Discussion Forum on the <u>online training platform</u> for Fish Welfare.

QUESTIONS FOR DISCUSSION

Do you have any bio-security protocols or systems on your farm?

- Have you experienced any disease outbreaks on your fish farm before? If
 you have, share your experience on how you discovered the onset of
 disease (e.g., what were the signs), if and how you diagnosed the cause of
 disease, and what you did to treat the disease and combat the spread.
- Do you engage qualified professional(s) to provide diagnostic and treatment services for your fish farm? If you don't, why? What are the alternative options you employ?
- Discuss your current use of antibiotics. Do you consider it currently as antimicrobial stewardship or misuse?
- Do you have a record keeping system for your fish health, disease reports and antibiotic use?

REFERENCES

- Aarattuthodiyil, S. & Wise, D. (2017). Biosecurity practices on fish farms need beefing up. Global Seafood Alliance. Available from: https://www.globalseafood.org/advocate/biosecurity-practices-fishfarms-beefed/
- Abd El-Hack, M. E., El-Saadony, M. T., Nader, M. M., Salem, H. M., El-Tahan, A. M., Soliman, S. M., & Khafaga, A. F. (2022). Effect of environmental factors on growth performance of Nile tilapia (Oreochromis niloticus). *International Journal of Biometeorology*, 66(11), 2183-2194
- Adams, L. (2019, May 20). Is there a problem with salmon farming? BBC News. https://www.bbc.com/news/uk-scotland-48266480
- Adekanye, U.O., Ekiri, A.B., Galipó, E., Muhammad, A.B., Mateus, A., La Ragione, R.M., & Cook, A.J. (2020). Knowledge, attitudes and practices of veterinarians towards antimicrobial resistance and stewardship in Nigeria. *Antibiotics*, 9(8), 453. https://doi.org/10.3390/antibiotics9080453.
- Amazon Web Services (n.d.). Water Quality Tolerance Reference Chart. [Chart handout].

 https://sitesmedia.s3.amazonaws.com/creekconnections/files/2014/12/Water-Quality-Charts.pdf.
- Andrade, L.S.D., Andrade, R. L.B.D., Becker, A.G., Rossato, L.V., Rocha, J.F.D., & Baldisserotto, B. (2007). Interaction of water alkalinity and stocking density on survival and growth of silver catfish, Rhamdia quelen, juveniles. *Journal of the World Aquaculture Society*, 38(3), 454-458.
- Animal Welfare Institute. (2018). The critical relationship between farm animal health and welfare. Available from: https://awionline.org/sites/default/files/uploads/documents/FA-AWI-Animal-HealthWelfare-Report-04022018.pdf.
- Ardjosoediro, I., & Ramnarine, I. W. (2002). The influence of turbidity on growth, feed conversion and survivorship of the Jamaica red tilapia strain. Aquaculture, 212(1-4), 159-165.
- Arechavala-Lopez, P., Caballero-Froilán, J. C., Jiménez-García, M., Capó, X., Tejada, S., Saraiva, J. L., Sureda, A., & Moranta, D. (2020). Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of Sparus aurata. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68306-6.
- Arechavala-Lopez, P., Cabrera-Álvarez, M. J., Maia, C. M., & Saraiva, J. L. (2021). Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Reviews in Aquaculture, 14(2). https://doi.org/10.1111/raq.12620
- Arechavala-Lopez, P., Cabrera-Álvarez, M.J., Maia, C.M., & Saraiva, J.L. (2021). Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Reviews in Aquaculture, 14(2). https://doi.org/10.1111/raq.12620.

- Arechavala-Lopez, P., Diaz-Gil, C., Saraiva, J. L., Moranta, D., Castanheira, M. F., Nuñez-Velázquez, S., Ledesma-Corvi, S., Mora-Ruiz, M. R., & Grau, A. (2019). Effects of structural environmental enrichment on the welfare of juvenile seabream (Sparus aurata). Aquaculture Reports, 15, 100224. https://doi.org/10.1016/j.agrep.2019.100224.
- Asaase A, (2013) Effects of stocking density on the production of Nile tilapia (oreochromis niloticus) in floating net cages on the Volta Lake. MPhill Thesis. University of Ghana. https://ugspace.ug.edu.gh/items/d43e81b1-7d75-4744-bdbf-96e076a2f063.
- Ashley, P. J. (2007). Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science, 104(3-4), 199–235. https://doi.org/10.1016/j.applanim.2006.09.001
- Aslesen, H. W., Astroza, A., & Gulbrandsen, M. (2009). Multinational companies embedded in national innovation systems in developing countries: the case of Norwegian fish farming multinationals in Chile. Repository.gatech.edu. http://hdl.handle.net/1853/35132
- Babb, S. (2020, April 3). Do fish feel pain? FWI. https://www.fishwelfareinitiative.org/post/do-fish-feel-pain.
- BENEFISH (2010). Global food security: ethical and legal challenges. Wageningen Academic Publishers
- Benli, A. Ç. K., Köksal, G., & Özkul, A. (2008). Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. *Chemosphere*, 72(9), 1355-1358.
- Bera, K.K., Karmaka, S., Jana, P., Das, S.K. Purkait, S., Pal, S., & Haque, R. (2018). Biosecurity in aquaculture: An overview. Aqua international, 42.
- Boyd, C.E. & Hanson, T. (2010, January 1). Dissolved oxygen concentrations in pond aquaculture. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/dissolved-oxygenconcentrationspondaquaculture/#:~:text=Aerated%20channel%20catfish%20and%20shrimp,production%2C%20and%20might%20improve%20FCR.
- Braithwaite, V. (2010). Do fish feel pain? In Google Books. OUP Oxford. https://books.google.de/books?hl=en&lr&id=aMvonPqzu_cC&oi=fnd&pg=PT2&dq=victoria%2Bbraithwaite&ots=tla1LJDE2E&sig=uxlBhTUYTiCk9pllnoKTK <a href="https://yturc.org/y
- Broom, D.M. (2011). A history of animal welfare science. Acta Biotheoretica, 59, 121-137. https://doi.org/10.1007/s10441-011-9123-3.
- Brown, C. (2014). Fish intelligence, sentience and ethics. *Animal Cognition*, 18(1), 1–17. https://doi.org/10.1007/s10071-014-0761-0.
- Buller, H., Blokhuis, H., Jensen, P., & Keeling, L. (2018). Towards farm animal welfare and sustainability. *Animals*, 8(6), 81. https://doi.org/10.3390/ani8060081
- Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environmental Microbiology*, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x.

- Cascarano, M.C., Stavrakidis-Zachou, O., Mladineo, I., Thompson, K.D., Papandroulakis, N., & Katharios, P. (2021). Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. *Pathogens*, 10(9), 1205. https://doi.org/10.3390/pathogens10091205.
- Chabrillón, M., Rico, R.M., Arijo, S., Diaz-Rosales, P., Balebona, M.C., & Moriñigo, M.A. (2005). Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). *Journal of fish Diseases*, 28(9), 531-537. https://doi.org/10.1111/j.1365-2761.2005.00657.
- Choudhary, H. R., & Sharma, B. K. (2018). Impact of Nile tilapia (Oreochromis niloticus) feeding on selected water quality parameters. *Journal of Entomology and Zoology Studies*, 6(5), 2371-2377.
- Chowdhury, S., Rheman, S., Debnath, N., Delamare-Deboutteville, J., Akhtar, Z., Ghosh, S., Parveen, S., Islam, K., Islam, M.A., Rashid, M.M., Khan, Z. H., Rahman, M., Chadag, V.M., & Chowdhury, F. (2022). Antibiotics usage practices in aquaculture in Bangladesh and their associated factors. *One Health* (Amsterdam, Netherlands), 15, 100445. https://doi.org/10.1016/j.onehlt.2022.100445.
- Colt, J., & Kroeger, E. (2013). Impact of aeration and alkalinity on the water quality and product quality of transported tilapia a simulation study. Aquacultural Engineering, 55, 46-58.
- Conte, F., Passantino, A., Longo, S., & Voslářová, E. (2014). Consumers' attitude towards fish meat. *Italian Journal of Food Safety*, 3(3). https://doi.org/10.4081/ijfs.2014.1983.
- Copatti, C.E., Garcia, L.D.O., Kochhann, D., Cunha, M.A.D., Becker, A.G., & Baldisserotto, B. (2011). Low water hardness and pH affect growth and survival of silver catfish juveniles. *Ciência Rural*, 41, 1482-1487.
- Ducrot, C., Bed'Hom, B., Béringue, V., Coulon, J.B., Fourichon, C., Guérin, J. L., ... & Pineau, T. (2011). Issues and special features of animal health research. Veterinary Research, 42(1), 1-10. https://doi.org/10.1186/1297-9716-42-96.
- El-Sherif, M. S., & El-Feky, A. M. I. (2009). Performance of Nile tilapia (Oreochromis niloticus) fingerlings. I. Effect of pH. *International Journal of Agriculture and Biology*, 11(3), 297-300.
- European Union; Council Regulation (EC) No 1099/2009 on the Protection of Animals at the time of killing, September 2009; https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1099
- Farm, M. (2022, September 12). Advantages and disadvantages of earthen pond you should know. Marywil Farm.
- https://marywilfarms.com.ng/2022/09/12/advantages-and-disadvantages-of-earthenpond-you-should-consider-infishfarming/#%3A~%3Atext%3DAn%20earthen%20pond%20is%20an%2Csoil%20for%20high%20water%20retention.

- Farmed Fish Welfare Report 2020. (2019). Animal Charity Evaluators. https://animalcharityevaluators.org/research/reports/farmed-fish-welfare-report/#full-report.
- Fathurrahman, Nasution, T. I., Ningsih, H. W., Tarigan, K., & Pulungan, I. H. (2020). Automatic and realtime control of pH level in water catfish cultivation. In *Journal of Physics*: Conference Series (Vol. 1428, No. 1, p. 012055). IOP Publishing.
- Fish Count. (2019). Live transport of farmed fish. http://fishcount.org.uk/farmed-fishtransport.
- Fishcount. (2019). Numbers of farmed fish slaughtered each year <u>fishcount.org.uk</u>. <u>Fishcount.org.uk</u>.
- Fishcount. (2019). Numbers of farmed fish slaughtered each year. http://fishcount.org.uk/fish-count-estimates-2/numbers-of-farmed-fish-slaughtered-each-year
- Food and Agricultural Organisation. (2018a). The state of world fisheries and aquaculture 2018 meeting the sustainable development goals. From http://www.fao.org/3/i9540en/I9540EN.pdf Accessed 11.01.2025.
- Food and Agricultural Organisation. (2023). The state of food and agriculture 2023

 Revealing the true cost of food to transform agrifood systems. Rome. https://doi.org/10.4060/cc7724en
 http://www.fao.org/3/i9540en/I9540EN.pdf. Accessed 12.01.2025.
- Food Safety considerations of animal welfare aspects of husbandry systems for farmed fish Scientificopinion of the Panel on Biological Hazards. (2008). EFSA Journal, 6(12), 867. https://doi.org/10.2903/j.efsa.2008.867.
- Friesinger, J. G., Birkeland, B., & Thorød, A. B. (2021). Human-animal relationships in supported housing: animal atmospheres for mental health recovery. Frontiers in Psychology, 12, 712133. https://doi.org/10.3389/fpsyg.2021.712133.
- Gan, L., Liu, Y.J., Liang, T., Yue, Y., Yang, H.J., Liu, F.J., Chen, Y.J., & Liang, G. (2013). Effects of dissolved oxygen and dietary lysine levels on growth performance, body composition feed conversion ratio and of arass Ctenopharyngodon idella. Aquaculture Nutrition, 860-869. 19(6), https://doi.org/10.1111/anu.12030.
- Ghana National Aquaculture Development Plan (GNADP) 2023-2027. Ministry of Fisheries and Aquaculture Development (MoFAD), Ghana.
- Global Aquaculture Alliance. (2019, June 10). What is the environmental impact of aquaculture? Global Aquaculture Alliance. https://www.aquaculturealliance.org/blog/what-is-the-environmentalimpact-of-aquaculture/
- Goldburg, R., & Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3(1), 21-28. https://doi.org/10.1890/1540-9295(2005)003%5b0021:FSFAFF%5d2.0.CO;2.
- Hecht, T. & Appelbaum, S. (1988). Observations on intraspecific aggression and coeval sibling cannibalism by larval and juvenile Clarias gariepinus

- (Clariidae: Pisces) under controlled conditions. Journal of Zoology, 214, 21-44
- Henriksson, P. J., Rico, A., Troell, M., Klinger, D. H., Buschmann, A. H., Saksida, S., & Zhang, W. (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustainability Science, 13, 1105-1120. https://doi.org/10.1007/s11625-017-0511-8.
- Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. *Clinical Infectious Diseases*, 49(8), 1248-1253. https://doi.org/10.1007/s11625-017-0511-8.
- Holmyard, N. (2017). Fish producers benefit from humane slaughter techniques Responsible Seafood Advocate. Global Seafood Alliance. https://www.globalseafood.org/advocate/fish-producers-benefithumane-slaughter-techniques/.
- Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. *Journal of Environmental Management*, 92(10), 2304-2347. https://doi.org/10.1016/j.jenvman.2011.05.023.
- Hossain, M. A. R., Beveridge, M. C. M., & Haylor, G. S. (1998). The effects of density, light and shelter on the growth and survival of African catfish (Clarias gariepinus Burchell, 1822) fingerlings. Aquaculture, 160(3-4), 251–258. https://doi.org/10.1016/s0044-8486(97)00250-0.
- Hossain, M.A., Hossain, M.A., Haque, M.A., Mondol, M.M.R., Harun-Ur-Rashid, M., & Das, S.K. (2022). Determination of suitable stocking density for good aquaculture practice-based carp fattening in ponds under drought-prone areas of Bangladesh. Aquaculture, 547, 737485.
- Hossain, Md. A., Hossain, Md. A., Haque, Md. A., Mondol, Md. M. R., & Rashid, Md. H.U. (2020). Determination of suitable species combination for good aquaculture practice based carp fattening in ponds under drought prone barind area of Bangladesh. *Archives of Agriculture and Environmental Science*, 5(2), 114–122. https://doi.org/10.26832/24566632.2020.050205
- http://fishcount.org.uk/fish-count-estimates-2/numbers-of-farmed-fish-slaughtered-each-year.
- https://www.ciwf.org.uk/media/7442240/transitioning-towards-cage-free-farming-in-the-eu finalreport october.pdf.
- https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x 6708e/x6708e01.htm.
- Humane Slaughter Association. (2004). Humane harvesting of farmed fish. Guidance Notes No. 5. Humane Slaughter Association, Wheathampstead, Hertfordshire. 1-23.
- https://www.hsa.org.uk/downloads/publications/harvestingfishdownloadupdated-with-2016-logo.pdf
- Iversen, M., Finstad, B., & Nilssen, K. J. (1998). Recovery from loading and transport stress in Atlantic salmon (Salmo salar L.) smolts. Aquaculture, 168(1), 387–394. https://doi.org/10.1016/S0044-8486(98)00364-0

- Jayadi, A., Samsugi, S., Ardilles, E. K., & Adhinata, F. D. (2022, November). Monitoring water quality for catfish ponds using fuzzy mamdani method with internet of things. In 2022 International Conference on Information Technology Research and Innovation (ICITRI) (pp. 77-82). IEEE.
- Kashimuddin, S. M., Ghaffar, M. A., & Das, S. K. (2021). Rising temperature effects on growth and gastric emptying time of freshwater african catfish (Clarias gariepinus) fingerlings. *Animals*, 11(12), 3497.
- Klanian, M.G. A.A. C., & Arámburu-Adame, C. (2013). Performance of Nile tilapia Oreochromis niloticus fingerlings in a hyper-intensive recirculating aquaculture system with low water exchange. Latin American Journal of Aquatic Research, 41(1), 150-162 https://doi.org/10.3856/vol41-issue1-fulltext-12.
- Lai, J., Wang, H. H., Ortega, D. L., & Olynk Widmar, N. J. (2018). Factoring Chinese consumers' risk perceptions into their willingness to pay for pork safety, environmental stewardship, and animal welfare. *Food Control*, 85, 423–431. https://doi.org/10.1016/j.foodcont.2017.09.032
- Larsson, D.J., Andremont, A., Bengtsson-Palme, J., Brandt, K.K., de Roda Husman, A.M., Fagerstedt, P., & Wernersson, A.S. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. *Environment International*, 117, 132-138. https://doi.org/10.1016/j.envint.2018.04.041.
- Leonard, J. N., & Skov, P. V. (2022). Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. *Journal of Thermal Biology*, 105, 103206. https://doi.org/10.1016/j.jtherbio.2022.103206.
- Leone, E. H., & Estévez, I. (2008). Economic and Welfare Benefits of Environmental Enrichment for Broiler Breeders. *Poultry Science*, 87(1), 14–21. https://doi.org/10.3382/ps.2007-00154.
- Madzingira, O. (2018). Animal Welfare Considerations in Food-Producing Animals. Animal Welfare. https://doi.org/10.5772/intechopen.78223.
- Marchant-Forde, J.N., & Boyle, L.A. (2020). COVID-19 effects on livestock production: a one welfare issue. *Frontiers in Veterinary Science*, 7, 585787. https://doi.org/10.3389/fvets.2020.585787
- McClure, C. A., Hammell, K. L., & Dohoo, I. R. (2005). Risk factors for outbreaks of infectious salmon anemia in farmed Atlantic salmon, Salmo salar. *Preventive Veterinary Medicine*, 72(3-4), 263–280. https://doi.org/10.1016/j.prevetmed.2005.07.010
- Mellor, D. J. (2016). Updating animal welfare thinking: Moving beyond the "Five Freedoms" towards "a Life Worth Living". *Animals*, 6(3), 21. https://doi.org/10.3390/ani6030021
- Mellor, D. J. (2017). Operational details of the five domains model and its key applications to the assessment and management of animal welfare. *Animals*, 7(8), 60. doi:10.3390/ani7080060
- Mendl, M., Burman, O. H., Parker, R. M., & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and

- underlying mechanisms. Applied Animal Behaviour Science, 118(3-4), 161-181. https://doi.org/10.1016/j.applanim.2009.02.023.
- Mood, A., Elena, L., Natasha, K.B., Phil B. (2023) Estimating global numbers of farmed fishes killed for food annually from 1990 to 2019; Cambridge University Press, Animal Welfare. https://www.cambridge.org/core/journals/animal-welfare/article/estimating-global-numbers-offarmed-fishes-killed-for-food-annually-from-1990-to-2019/765A7CCA23ADA0249EF37CFC5014D351.
- Mukaila, R., Ukwuaba, I. C., & Umaru, I. I. (2023). Economic impact of disease on small-scale catfish farms in Nigeria. Aquaculture, 739773. https://doi.org/10.1016/j.aquaculture.2023.739773
- Näslund, J., & Johnsson, J. I. (2014). Environmental enrichment for fish in captive environments: effects of physical structures and substrates. *Fish and Fisheries*, 17(1), 1–30. https://doi.org/10.1111/faf.12088.
- Naylor, R., & Burke, M. (2005). Aquaculture and ocean resources: Raising Tigers of the Sea. Annual Review of Environment and Resources, 30(1), 185–218. https://doi.org/10.1146/annurev.energy.30.081804.121034.
- Neto, J.F. & Percilia, C.G. (2020). Environmental enrichment techniques and tryptophan supplementation used to improve the quality of life and animal welfare of Nile tilapia. Aquaculture Reports, 17: 100354.
- Newaj-Fyzul, A., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. *Journal of Fish Diseases*, 38(11), 937-955. https://doi.org/10.1111/jfd.12313
- Ngamkala, S., Futami, K., Endo, M., Maita, M., & Katagiri, T. (2010). Immunological effects of glucan and Lactobacillus rhamnosus GG, a probiotic bacterium, on Nile tilapia Oreochromis niloticus intestine with oral Aeromonas challenges. *Fisheries Science*, 76, 833-840. https://doi.org/10.1007/s12562-010-0280-0
- Ngamkala, S., Futami, K., Endo, M., Maita, M., & Katagiri, T. (2010). Immunological effects of glucan and Lactobacillus rhamnosus GG, a probiotic bacterium, on Nile tilapia Oreochromis niloticus intestine with oral Aeromonas challenges. *Fisheries Science*, 76, 833-840. https://doi.org/10.1007/s12562-010-0280-0
- Nicks, B., & Vandenheede, M. (2014). Animal health and welfare: equivalent or complementary? Revue scientifique et technique (International Office of Epizootics), 33(1), 97–96. https://doi.org/10.20506/rst.33.1.2261.
- Nicks, B., & Vandenheede, M. (2014). Animal health and welfare: equivalent or complementary? Revue Scientifique et Technique (International Office of Epizootics), 33(1), 97–101, 91–96. https://pubmed.ncbi.nlm.nih.gov/25000781/.
- OECD/FAO (2024). OECD-FAO Agricultural Outlook 2024-2033, Paris and Rome, https://doi.org/10.1787/4c5d2cfb-en. From https://openknowledge.fao.org/server/api/core/bitstreams/5aac5078-625d-4b94-b964-bea40493016c/content. Accessed: 12.01.2025

- https://www.aquafeed.com/regions/africa/west-africa-diversifying-species-to-cope-with-high-feed-costs/ Accessed: 02.05.2025
- https://globalchange.vt.edu/graduate/people-of-the-igc/alumni/anane-taabeah-gifty.html Accessed 02.05.2025
- Ofori-Darkwah P, Adjei-Boateng D, Edziyie R.E, Agbo N.W and Lund I. (2024). Early ontogeny of the African bony-tongue (Heterotis niloticus) and the effect of Artemia and rotifer live feeds on larval digestive enzyme activity and performance. Front. Aguac. 3:1310429. doi: 10.3389/faguc.2024.1310429
- Oké, V., & Goosen, N. J. (2019). The effect of stocking density on profitability of African catfish (Clarias gariepinus) culture in extensive pond systems. Aquaculture, 507, 385-392. https://doi.org/10.1016/j.aquaculture.2019.04.043
- Oliveira, A. R., Cabrera-Álvarez, M. J., Soares, F., Candeias-Mendes, A., Arechavala-Lopez, P., & Saraiva, J. L. (2022). Effects of environmental enrichment on the welfare of Gilthead Seabream broodstock. SIBIC 2022. https://doi.org/10.3390/blsf202201309
- Pinillos, R. G. (Ed.). (2018). One welfare: A framework to improve animal welfare and human well-being. CAB International. https://www.cabidigitallibrary.org/doi/abs/10.1079/9781786393845.0000
- Poli, B. (2009). Farmed fish welfare-suffering assessment and impact on product quality. *Italian Journal of Animal Science*, 8(sup1), 139–160. https://doi.org/10.4081/ijas.2009.s1.139
- Qayyum, A., Ayub, M., & Tabinda, A. (2005). Effect of Aeration on Water Quality, Fish Growth and Survival in Aquaculture Ponds. *Pakistan J. Zool*, 37(1), 75–80. http://zsp.com.pk/pdf37/PJZ-17603.pdf
- Riberolles, G. (2020, February 19). Pain of the fish: Are we going to continue to drown... the fish? La Fondation Droit Animal, *Ethique et Sciences*. https://www.fondation-droit-animal.org/104-douleur-despoissons-va-t-on-continuer-a-noyer-le-poisson/.
- Ritchie, H., & Roser, M. (2021). Biodiversity. Our World in Data. https://ourworldindata.org/fish-andoverfishing#citation.
- Rosburg, A. J., Fletcher, B. L., Barnes, M. E., Tref, C. E., & Bursell, B. R. B. (2019). Vertically-Suspended Environmental Enrichment Structures Improve the Growth of Juvenile Landlocked Fall Chinook Salmon. *International Journal of Innovative Studies in Aquatic Biology and Fisheries*, 5(1). https://doi.org/10.20431/2454-7670.0501004
- Sahuo, B., Priyadarshini, S. & Mohanta K. N. (2017). Biosecurity Measures in Aquaculture. *Fishing Chimes*, 37(2), 29-37.
- Sallenave, R. (2016, October) Important Water Quality Parameters in Aquaponics Systems. New Mexico State University. https://pubs.nmsu.edu/_circulars/CR680/
- Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: current knowledge and future priorities. *Environment International*, 34(8), 1215-1226. https://doi.org/10.1016/j.envint.2008.04.009

- Sarmah, A. K., Meyer, M. T., & Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. *Chemosphere*, 65(5), 725-759. https://doi.org/10.1016/j.chemosphere.2006.03.026
- Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. *Scientific Reports*, 10(1), 21878. https://doi.org/10.1038/s41598-020-78849-3.
- Schneider, O., Schram, E., Kals, J., van der Heul, J., Kankainen, M., & van der Mheen, H. (2012). Welfare interventions in flatfish recirculation aquaculture systems and their economical implications. Aquaculture Economics & Management, 16(4), 399–413. https://doi.org/10.1080/13657305.2012.729252
- Schweiz, F., Suisse, Gerber, B., Stamer, A., & Stadtlander, T. (2015). R E V I E W ED a s FiBL hat Standorte in der Schweiz, Deutschland und Österreich FiBL offices located in Switzerland, Germany and Austria Environmental Enrichment and its effects on Welfare in fish Autoren: Im Auftrag von: BLV -Bundesamt für Lebensmittelsicherheit und Veterinärwesen 2. https://orgprints.org/id/eprint/29142/1/Gerber-etal-2015- Environmental-Enrichment-and-its-effects-on-welfare-in-fish-FiBL-Review.pdf.

Statista.com

- https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiL4_Xu1OGLAxVTWUEAHfBMyoQFnoECBgQAQ&url=https%3A%2F%2Fwww.statista.com%2Fstatistics%2F1118781%2Faquaculture-production-in-ghana%2F&usg=AOvVaw2h0skSr4NTIYKJEW6nPQE-&opi=89978449_Accessed: 26/02/2025 @ 4:08pm
- Stewart, L. A. E., Kadri, S., Noble, C., Kankainen, M., Setälä, J., & Huntingford, F. A. (2012). The bioeconomic impact of improving fish welfare using demand feeders in Scottish Atlantic salmon smolt production. Aquaculture Economics & Management, 16(4), 384–398. https://doi.org/10.1080/13657305.2012.729253.
- Subasinghe, R., Soto, D., & Jia, J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1(1), 2-9. https://doi.org/10.1111/j.1753-5131.2008.01002.x
- Sumberg, J., Jatoe, J., Kleih, U., Flynn, J. (2016). Ghana's evolving protein economy. Food Secur. 8 (5), 909–920. https://doi.org/10.1007/s12571-016-0606-6.
- Torrezani, C. S., Pinho-Neto, C. F., Miyai, C. A., Fabio, & Barreto, R. E. (2013). Structural enrichment reduces aggression in tilapia, *Rendalli*. 46(3), 183–190. https://doi.org/10.1080/10236244.2013.805053.
- Towers, L. (2014). Semi-Intensive Culture of Tilapia in Concrete Ponds in Palo Blanco, Peru. Thefishsite.com. https://thefishsite.com/articles/semiintensive-culture-of-tilapia-in-concreteponds-in-palo-blanco-peru.
- UNDP. (2023). Sustainable Development Goals. Sustainable Development Goals; United Nations. https://www.undp.org/sustainable-development-goals.
- Wiyoto, W., Siskandar, R., Dewi, R. K., Lesmanawati, W., Mulya, M. A., & Ekasari, J. (2023). Effect of stocking density on growth performance of African catfish

- Clarias gariepinus and water spinach Ipomoea aquatica in aquaponics systems with the addition of AB mix nutrient. *Jurnal Akuakultur Indonesia*, 22(1), 47-54. https://doi.org/10.19027/jai.22.1.47-54
- World Health Organization (WHO). (2021). Antimicrobial resistance [Fact sheet]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
- Yanong, R. P., & Erlacher-Reid, C. (2012). Biosecurity in aquaculture, part 1: an overview. SRAC Publication, 4707, 522. http://fisheries.tamu.edu/files/2013/09/SRAC-Publication-No.-4707-Biosecurity-inAquaculture-Part-1-An-Overview.pdf
- Zhang, Z., Bai, Q., Xu, X., Guo, H., & Zhang, X. (2020). Effects of environmental enrichment on the welfare of juvenile black rockfish Sebastes schlegelii: Growth, behavior and physiology. Aquaculture, 518, 734782. https://doi.org/10.1016/j.aquaculture.2019.734782.
- Zhang, Z., Fu, Y., Zhang, Z., Zhang, X., & Chen, S. (2021). A comparative study on two territorial fishes: The influence of physical enrichment on aggressive behaviour. *Animals*, 11(7), 1868. https://doi.org/10.3390/ani11071868.
- Zhang, Z., Xu, X., Wang, Y., & Zhang, X. (2020). Effects of environmental enrichment on growth performance, aggressive behavior and stress-induced changes in cortisol release and neurogenesis of black rockfish Sebastes schlegelii. Aquaculture,

 528,

 https://doi.org/10.1016/j.aquaculture.2020.735483.
- Zoo and Aquarium Association Australasia (ZAA). (2022). The Five Domains. https://zooaquarium.org.au/public/Public/Animal-Welfare/The-Five-Domains.aspx#:~:text=The%20first%20four%20domains%20(Nutrition,fifth%20domain%2C%20the%20Mental%20Domain.

- in AFIWELProgram
- @afiwelprogram
- f Africa Fish & Aquaculture Welfare
- afiwelprogram@onehealthdev.org