

CONTRIBUTION AND ACKNOWLEDGMENTS

Writing and development:

• Abir Gharbi (BSc, MSc) Africa Fish Welfare (AFIWEL) Fellow, OHDI

Technical Review and Validation:

- Dr Sami Mili, Professor at the University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, 7021 Bizerte, Tunisia
- Dr Kikiope Oluwarore, Executive Director, One Health & Development Initiative (OHDI)

Funding Support: Effective Altruism (EA) Funds

COPYRIGHT STATEMENT

Copyright © One Health and Development Initiative (OHDI), June 2025

All rights reserved. No part of this document may be reproduced or used in any manner without the prior written permission of the copyright owner, except for the use of cited brief quotations.

To request permissions, contact <u>afiwelprogram@onehealthdev.org</u>

Suggested citation: Gharbi A., (2025). Fish Welfare Training Guide for Tunisia; One health Development Initiative (OHDI), June 2025.

ABREVIATIONS AND ACRONYMS

CTA: Centre Technique d'Aquaculture

DGPA: Direction Générale de Pêche et d'Aquaculture

FAO: Food and Agriculture Organisation of the United Nations

FAWC: Farm Animal Welfare Council

GIPP: Groupement Interprofessionnel des Produits de la Pêche

INSTM: Institut National des Sciences et Technologies de la Mer

ONP: Office National des Pêches

RSPCA: Royal Society for the Prevention of Cruelty to Animals

SDG: Sustainable Development Goals

WOAH: World Organisation for Animal Health

TABLE OF CONTENTS

CONTRIBUTION AND ACKNOWLEDGMENTS	i
COPYRIGHT STATEMENT	ii
ABREVIATIONS AND ACRONYMS	iii
TABLE OF CONTENTS	iv
PREFACE	ix
MODULE 1 – OVERVIEW OF AQUACULTURE IN TUNISIA	1
What is Aquaculture?	1
Fishing and Aquaculture in Tunisia	1
Brief Overview of Aquaculture in Tunisia	2
Historical	2
National strategy	4
Aquaculture Fish Production Systems in Tunisia	5
Question & Answer Session	9
MODULE 2 – INTRODUCTION TO ANIMAL WELFARE	10
Overview, History and Trends of Animal Welfare	10
History	10
Trends	11
The Five Freedoms of Animal Welfare	12
The Five Domains of Animal Welfare	15
Animal Welfare in African Conditions	17
Legal Framework for Animal and Fish Welfare in Tunisia	18
MODULE 3 – INTRODUCTION TO FISH WELFARE	20
What is Fish Welfare?	20
Main Factors Influencing Fish Welfare	20
Benefits of Improved Aquaculture Fish Welfare	20
Introduction to Fish Welfare Practices	21
Fish Welfare in Tunisia	22
Question & Answer Session	25
MODULE 4 – GROWING SYSTEMS AND FISH WELFARE	26

Site Selection		26
Common Growing Facilities a	nd Welfare Considerations	30
Stocking Density		34
Question & Answer Session		38
MODULE 5 – WATER QUALITY A	ND FISH WELFARE	39
Essential Water Quality Param	eters	39
Best Practices for Maintaining	Optimal Water Quality	41
Life Stages and Species-Spec	fic Considerations	42
Sea bass and sea bream welf	are and water quality	42
How to Measure and Correct	Water Quality Parameters	43
Question & Answer Session		44
MODULE 6 – FEEDING AND FIS	H WELFARE	45
Composition and Quality of Fe	eed Ingredients	46
Question & Answer Session		47
MODULE 7 – FISH WELFARE DU	RING HANDLING AND TRANSPORTATION	48
Stress Factors during Handling		48
Transportation and Fish Welfar	e	48
Best Practices for Safe and Hu	mane Transportation	49
Question & Answer Session		52
MODULE 8 – SLAUGHTERING &	FISH WELFARE	53
Overview of Humane Fish Slau	ghter	53
Benefits of Humane Slaughter	of Fish	54
Pre-slaughter Welfare Conside	erations	55
Common Fish Slaughter Metho	ods	56
Overview of Slaughter Process	s in Tunisia	57
Question & Answer Session		59
MODULE 9 – ENVIRONMENTAL	ENRICHMENT AND FISH WELFARE	60
What is Environmental Enrichn	nent?	60
Types of Environmental Enrich	ment	61
Benefits of Environmental Enric	chment	62
Specie Recommendations for	Environmental Enrichment	62
Gilthead sea bream		63

Structural enrichment	63
Sensory enrichment	64
European sea bass	64
Tilapia fish	65
Question & Answer Session	67
MODULE 10 – FISH HEALTH AND WELFARE	68
Animal Health and Welfare	68
Biosecurity for Fish Health and Welfare	69
Benefits of Biosecurity on Fish Farms	69
Common Biosecurity Measures and Practices	71
Fish Diseases and Impacts	72
Disease Reporting	85
Antimicrobial Resistance	85
How does AMR spread from animals to humans?	86
Impact of AMR	86
Combatting AMR	87
Q&A Session	89
REFERENCES	90

LIST OF FIGURES

Figure 1 Pacific oyster Crassostreagigas on fixed tables in Bizerte				
igure 2 Sea bream (Sparusaurata) and Sea bass				
(Dicentrarchuslabrax)(www.gipp.tn)	3			
rigure 3 Sea bass and sea bream farming (Gharbi, 2024)				
Figure 4 Aquaponic unit (www.ctaqua.tn)	7			
Figure 5 Floating cage (actual work, 2024)				
Figure 6 Intensive breeding of Nile tilapia in the South of Tunisia (www.ctaqu	a.tn)			
	8			
Figure 7 Intensive cultivation of spirulina(www.ctaqua.tn)	9			
Figure 8 A summary of good welfare indicators, how to achieve them and h	ow			
they can be quantified (Njisane et al ,2020)	14			
Figure 9 An illustration of poor animal welfare and stress indicators impactin	g on			
production and product quality (Njisane et al, 2020)	15			
Figure 10 A fish pond (FAO)	31			
Figure 11 Floating cage in Tunisia (ctaqua.tn)	31			
Figure 12 Concrete basin at the Tilapia breeding station in Bechima, Tunisia				
(ctaqua.tn)	32			
Figure 13 RAS system in aquaculture (asc-aqua.org)	32			
Figure 14 Fish Raceway (aquaportail.com)	33			
Figure 15 Aquaponics System (ctaqua.tn)	33			
Figure 16 Examples of trucks with oxygenated tanks to transport fish	51			
Figure 17 Tanks to transport fish	51			
Figure 18 Schematic for the decision-making process in Environmental				
Enrichment; OWIs: Operational Welfare Indicators; PFF: Precision Fish Farming	g			
(Source: Arechavala-Lopez et al., 2021)	61			

LIST OF TABLES

Table 1 The core differences between the Five Domains and the Five Freedor	ns
Source: (Daisy Sopel, 2021)	17
Table 2 Summary of different aquaculture farming systems	29
Table 3 Water Quality Management in Aquaculture Systems	40
Table 4 Water quality parameters for sea bass, sea bream and tilapia	42
Table 5 Comparison between sea bass and sea bream welfare parameters	42
Table 6 How to solve some identified problems in water quality parameters	43
Table 7 Feed ingredients for fish	46
Table 8 Slaughter methods	57
Table 9 Environmental enrichment recommendation for tilapia fish species	65
Table 10 Common bacterial diseases of farmed fish	73
Table 11 Common fungal diseases of farmed fish	75
Table 12 Common Parasitic Diseases of Fishes	77
Table 13 Common Protozoan Diseases	79
Table 14 Viral diseases	82

PREFACE

Fish welfare is increasingly recognized as a core component of sustainable and ethical aquaculture. Across Africa, where aquaculture plays a vital role in food security, livelihoods, and economic development, there is growing urgency to embed welfare principles into production systems, policy frameworks, and capacity-building efforts.

The Africa Fish and Aquaculture Welfare (AFIWEL) Program, implemented by One Health and Development Initiative (OHDI), was established to address this need. The AFIWEL program is a pan-African initiative that is supporting ethical, welfare-driven, safe and sustainable aquatic life and production systems across Africa. One of its flagship initiatives is the AFIWEL Fellowship which engages select fisheries and aquaculture professionals and experts in capacity building, community building and field implementation program to advance fish and aquaculture welfare practices and integrate them into existing sustainable aquaculture frameworks. Through this pan-African fellowship model, the program supports professionals across the continent to lead transformative action in fish and aquaculture welfare through education, stakeholder engagement, and policy advocacy.

This Fish Welfare Training Guide is one of several developed by AFIWEL Fellows. This particular guide has been tailored to the specific aquaculture realities of Tunisia, providing practical, evidence-based knowledge and tools for fish farmers, aquaculture workers, extension officers, animal health professionals, and institutions involved in fish production value chain.

The content draws from global best practices, scientific insights, and local expertise to ensure that welfare recommendations are both technically sound and contextually relevant. It covers key aspects such as water quality, stocking densities, feeding, handling, transportation, health management, and humane slaughter, all anchored in the principles of good welfare practices: freedom from pain, distress, discomfort, and suffering.

As you explore this guide, we invite you to reflect on the broader goal it serves; which is to promote responsible aquaculture systems that protect animal welfare, support livelihoods, and ensure long-term environmental sustainability. We hope it will be a valuable resource in your efforts to improve fish health, welfare, productivity and sustainability outcomes in Tunisia and across Africa.

With best regards,

The AFIWEL Program Team

One Health and Development Initiative (OHDI)

MODULE 1 – OVERVIEW OF AQUACULTURE IN TUNISIA

What is Aquaculture?

Aquaculture is the farming of aquatic organisms, such as fish, crustaceans, molluscs and algae, in controlled environments. It aims to produce aquatic products for human consumption, industry, or for the repopulation of wild populations. Unlike fishing, which involves capturing aquatic organisms in their natural habitat, aquaculture involves raising them in tanks, ponds, floating cages at sea or other artificial systems.

Fishing and Aquaculture in Tunisia

With its two sea fronts running along 1350 km, a national maritime domain of 80,000 km² and 105,200 hectares of lagoons, Tunisia has always been a country of sailors and fishing has always been an activity of certain importance. This strategic sector represents 8% of the value of agricultural production and 1.1% of the gross national product and generates approximately 53,000 direct jobs. The port infrastructure includes 40 ports, including ten offshore ports: Tabarka, Bizerte, La Goulette, Kelibia, Sousse, Teboulba, Mahdia, Sfax, Gabes and Zarzis, and 30 coastal ports and landing sites. The total capacity of these ports is 150,000 tonnes of seafood per year (www.ctaqua.tn). The fishing fleet is of the order of 12,265 units, 91% of which are coastal boats. The fishing and aquaculture sector offers 43,011 jobs distributed as follows: 73% coastal fishing, 11% light fishing, 11% trawling, 3% shore fishing and 2% for aquaculture (DGPA,2023).

The volume of seafood exports in Tunisia fluctuates around 37,062 tonnes for a value close to 846 million dinars, thus placing it in second place in exports of agricultural and agri-food products after olive oil (DGPA, 2023). Around 75% of exports are directed to EU markets. The main exported products are cephalopods (octopus and cuttlefish), crustaceans (shrimp and prawns), shellfish and fresh fish (bluefin tuna) and aquaculture products. The development strategy of the

fisheries sector is based on the preservation of benthic resources, the exploitation of small pelagic resources, the improvement of the added value of commercial fishing products and the development of aquaculture.

Brief Overview of Aquaculture in Tunisia

Historical

Aquaculture in Tunisia is a very old activity dating back to Roman times, as evidenced by the mosaics in the Bardo Museum in Tunis. The recent Tunisian experience in this field dates back to the 1960s. Initiated by the private sector, it began with the breeding of the Mediterranean mussel Mytilusgalloprovincialis and the Pacific oyster Crassostreagigas on fixed tables in Bizerte (Figure 1).

Figure 1 Pacific oyster Crassostreagigas on fixed tables in Bizerte

The supply of mussel spat is done locally by capture in the Bizerte lagoon while that of oyster is done by importing from abroad (France, Italy, etc.). Subsequently, the shellfish farming facilities were transferred to the National Fisheries Office (ONP), which continued these activities and began the construction of ponds in the lagoons of Monastir and Tunis and began jointly with INSTOP (National Scientific and Technical Institute of Oceanography and Fisheries, currently INSTM) the stocking of certain dam reservoirs with fry of various species and their exploitation by fishing (common carp; bighead mullet; pig mullet, etc.).

In the early 1980s, one of the first private hatcheries of sea bass *Dicentrarchuslabrax* and sea bream *Sparusaurata* in the Mediterranean was set up in the south of the country by private operators supported by banks in the region (figure 2).

Figure 2 Sea bream (Sparusaurata) and Sea bass (Dicentrarchuslabrax) (www.gipp.tn)

The 1990s were marked by the implementation of the aquaculture master plan and the development of continental fish farming in inland freshwater bodies in extensive mode, although with some timid private achievements which mainly concerned the land-based farming of sea bass and sea bream and shellfish farming in the Bizerte lagoon (fixed tables and floating lines) following the liquidation of the ONP.

Since 2003, a new aquaculture activity has emerged, making an exceptional leap in terms of the adoption of new farming techniques: the fattening of bluefin tuna *Thunnusthynnus* which not only ensures a weight gain of more than 20% in a few months, but also allows the sale of this product on the international market at

times when the tuna flesh is fatty with the best prices. The tuna, from fishing and intended for fattening, is transferred alive to floating cages in the open sea. It is fattened there in captivity for a few months before being sold fresh at relatively more profitable prices.

Recent years have seen the expansion of floating and submersible cage farming of sea bass and sea bream. The supply of fry and feed is mainly through imports from abroad (France, Italy, etc.).

National strategy

From a strategic point of view, the Tunisian government has implemented two ten-year strategies for the development of aquaculture: The Aquaculture Master Plan (1996-2006) and the national strategy for the development of aquaculture (2007-2016). The objectives of this strategy are to ensure the sustainable development of aquaculture by:

- Improving the management of the aquaculture sector
- Quantitative and qualitative development of livestock products
- Increasing annual consumption per capita.

In 2019, the General Directorate of Fisheries and Aquaculture, in collaboration with the various stakeholders in the sector, set up a Strategic Study of Fisheries and Aquaculture for 2030 (www.ctaqua.tn). This study, based on a participatory approach, aims at the development of the fisheries and aquaculture sector, the preservation and sustainable and rational exploitation of fishery resources. This study recommends a dynamic national action plan based on six strategic axes including the sustainable development of the aquaculture sector whose main strategic objectives are:

- Improving the governance of the sector
- Improving the performance of aquaculture projects
- Strengthening scientific research in the sector
- Strengthening training in the sector
- Mastering health and zoo sanitary aspects

- Promoting the local market and encouraging exports
- Protecting the environment

Aquaculture Fish Production Systems in Tunisia

Aquaculture in Tunisia includes various breeding systems adapted to geographical specificities and the species cultivated. Here are the main Tunisian aquaculture systems:

1. Mariculture (Sea farming)

The first marine fish farming initiative began in 1984 in the Boughrara lagoon south of the island of Djerba to produce 400 tonnes/year of sea bass (*Dicentrarchus labrax*) and sea bream (*Sparus aurata*) in floating cages. Several natural disasters caused by toxic phytoplankton blooms such as Dinoflagellates in the Boughrara Sea have destabilised the operation of the farm (Figure 3).

The second initiative was installed 50 km north of Sousse and designed to produce sea bass and sea bream in raceways located on land (www.ctaqua.tn).

Figure 3 Sea bass and sea bream farming (Gharbi, 2024)

Marine aquaculture provides approximately 1,200 direct jobs and 2,000 jobs in total, and is experiencing a growing evolution of its share in the total production of the fisheries and aquaculture sector. This share has evolved significantly over the last ten financial years to reach, in 2016, approximately 13% of total production in terms of quantity and 22% in value (www.gipp.tn).

2. Shellfish farming

Shellfish farms are dedicated to the farming of molluscs, particularly mussels and oysters. The Bizerte lagoon is a major site for these activities.

Although Tunisian experience in the farming of Mediterranean mussels and Pacific oysters goes back more than half a century, this sector has not been able to exceed a production of 200 tonnes/year. Estimates are always beyond actual production (www.ctaqua.tn).

3. Freshwater aquaculture

The Tunisian experience in the exploitation of dam reservoirs by fishing dates back to the 1960s. This activity was initiated by the National Fisheries Office (ONP) through the stocking of certain dam reservoirs with fry of various species and their exploitation by fishing. The promulgation of the decree of the Minister of Agriculture of September 20, 1994, relating to fishing in dams, courses and expanses of fresh water made it possible to regulate and supervise this activity.

Currently, nine governorates are involved in this type of activity (Beja, Ben Arous, Bizerte, Jendouba, Le Kef, Nabeul, Zaghouan, Kairouan and Siliana). The number of boats is estimated at 232 and the number of fishermen at 450. These fishermen are farmers from the interior regions of the country who have a fairly low cash level. Extensive fish farming offers them the opportunity to profitably produce cheap fish, which they can easily sell or consume (www.ctaqua.tn).

In inland areas such as Siliana and Kairouan, artificial ponds and basins are used for farming freshwater fish such as carp and tilapia.

4. Aquaponics

Aquaponics combines fish farming and plant cultivation in symbiosis. In Tunisia, initiatives are emerging to promote this sustainable system. For example, the Facebook page "TunisieAquaponie" presents local projects in this field (www.tunisie-aquaponie.com) (Figure 4).

Figure 4 Aquaponic unit (www.ctaqua.tn)

5. Intensive and semi-intensive systems

Intensive systems involve high stocking density with strict control of environmental conditions, while semi-intensive systems combine natural and artificial methods to optimise production (Figures 5, 6, 7).

Figure 5 Floating cage (actual work, 2024)

Figure 6 Intensive breeding of Nile tilapia in the South of Tunisia (www.ctaqua.tn)

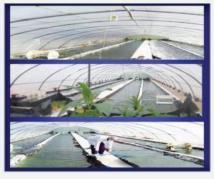


Figure 7 Intensive cultivation of spirulina(www.ctaqua.tn)

These systems reflect the diversity and dynamism of the Tunisian aquaculture sector, contributing to food security and economic development of the country.

Question & Answer Session

- What are the major challenges encountered in the management of aquaculture systems in Tunisia, and what solutions are envisaged?
- How does Tunisia position itself in relation to other Mediterranean countries in terms of aquaculture production?
- What are the specific environmental impacts of floating cages at sea on local ecosystems?
- How do local communities perceive the impact of aquaculture on their daily lives?
- Is aquaculture a real need in the existing Tunisian fisheries system?

MODULE 2 – INTRODUCTION TO ANIMAL WELFARE

Overview, History and Trends of Animal Welfare

Animal welfare refers to how an animal experiences and experiences its environment. It encompasses physical and mental aspects, assessing whether the animal's needs are met (Broom, 2011). The five fundamental freedoms, defined by the Farm Animal Welfare Council (FAWC), serve as a framework for assessing animal welfare:

- Freedom from hunger and thirst: access to adequate food.
- Freedom from discomfort: suitable environmental conditions.
- Freedom from pain, injury and disease: appropriate veterinary care.
- Freedom to express natural behaviours: space and conditions that allow for normal behaviours.
- Freedom from fear and distress: protection from stress (Brambell, 1965)

History

Agricultural societies used animals primarily as work tools and food resources. However, some philosophical traditions, such as Buddhism and Jainism, emphasized compassion toward living beings (Fraser, 2008). In the Western world, ideas about the treatment of animals have been influenced by figures such as Aristotle, who saw animals as subordinate to humans (Fraser, 2008). René Descartes viewed animals as biological machines devoid of consciousness. This mechanistic view influenced the way animals were treated. In contrast, philosophers such as Jean-Jacques Rousseau and Jeremy Bentham argued for animal rights. Bentham asked the fundamental question: "Can they suffer?", emphasizing that the capacity to feel pain should be the central criterion (Fraser, 2008).

The year 1822 saw the appearance of the first animal welfare laws, such as the Cruel Treatment of Cattle Act in the United Kingdom (Broom, 2011). In 1824, animal protection societies were founded, such as the Royal Society for the

Prevention of Cruelty to Animals (RSPCA) (Fraser, 2008). Following Brambell's report, the development of animal welfare science occurred in the 1960s, with studies of the behavioural and physiological needs of animals. In 1965, the Brambell Report introduced the basis of the "Five Freedoms" (Brambell, 1965). The World Organisation for Animal Health (WOAH) has integrated animal welfare into its standards since the 2000s (WOAH, 2021). Mellor and Beausoleil in 2015 talked about the development of labels and certifications based on welfare standards (e.g.: Organic Agriculture, Global Animal Partnership).

Trends

Science continues to better understand how animals perceive pain, emotion, and stress. Advanced techniques such as brain imaging and physiological markers make it possible to objectively assess well-being, with the integration of the concept of "quality of life" complements traditional approaches (Mellor & Beausoleil, 2015). In the field of livestock farming and agriculture, a transition towards more welfare-friendly livestock systems, such as free-range or free-range farming occurred (Broom, 2011).

As for aquaculture, there was a Development of sustainable aquaculture farming practices (e.g. fish welfare) and reduction of antibiotics through better stress management. (WOAH, 2021). Fraser (2008) showed the introduction of policies aimed at reducing suffering into wildlife management practices and a conflict between individual well-being and large-scale conservation. Mellor and Beausoleil (2015), in their study, they reveal the use of artificial intelligence and the Internet of Things (IoT) to monitor welfare parameters on farms. As well as, Fraser (2008) showed that the demand for ethical and animal welfare friendly products is increasing. The World Organisation for Animal Health (WOAH) is calling for the strengthening of national and international laws to improve the welfare of animals in farms, laboratories, and zoos and the adoption of global strategies to integrate animal welfare into the Sustainable Development Goals (SDGs) (WOAH, 2021).

The Five Freedoms of Animal Welfare

The Five Freedoms of Animal Welfare are fundamental principles developed by the Farm Animal Welfare Council (FAWC) in 1965 and updated in 1979. They aim to ensure that the basic needs of animals are met, particularly in farms, zoos and other human-controlled environments.

1. Freedom from hunger and thirst: Animals must always have access to clean water and adequate feed that meets their physiological needs. This ensures healthy growth, efficient production (in the case of livestock), and the prevention of diseases related to malnutrition.

Example: In cattle farms, an automatic waterier must be available to prevent dehydration, especially during periods of extreme heat.

Impact: A lack of food or water can weaken the immune system of animals, increasing their vulnerability to disease.

2. Freedom from discomfort: Animals must be kept in an environment that provides them with appropriate shelter, clean resting areas, and optimal temperatures. This aspect also includes managing hygiene in their habitats to reduce the risk of disease.

Example: Pigs should have a clean, non-slippery, dry floor with an area protected from the elements.

Impact: An unsuitable environment can lead to injuries, heat stress, or infections.

3. Freedom from pain, injury and disease: Animals must receive prompt and appropriate veterinary care, as well as disease prevention through vaccination, disinfection and regular health monitoring.

Example: In poultry farms, regular vaccination campaigns help prevent bird flu.

Impact: This limits the physical suffering of animals and improves their quality of life and productivity.

4. Freedom to express normal behaviours: Animals must be given the opportunity to behave naturally according to their species. This requires suitable facilities and social interaction with their peers where relevant.

Example: Laying hens in a free-range system can scratch the ground and perch, natural behaviours not possible in cages.

Impact: Behavioural restrictions increase stress, abnormal behaviours (such as pecking), and decrease overall well-being.

5. Freedom from fear and stress: Animals should not be subjected to violent treatment, stressful living conditions, or practices that generate excessive fear (for example, rough handling during transport).

Example: Restraint techniques used to handle cattle should be gentle and reduce panic. Impact: Stressed animals produce hormones such as cortisol, which affect not only their health but also, in the case of farm animals, the quality of their products (meat, milk, etc.).

The application of these principles is essential to promote animal welfare in animal farms, research laboratories, zoos, and even natural habitats. They also provide an ethical framework for judging human practices involving animals.

These freedoms can be achievable through specific management practices that are directly linked to each; such as access to nutritious feed and veterinary support, humane handling and slaughter, appropriate surroundings (and shelter) and management (Figure 8).

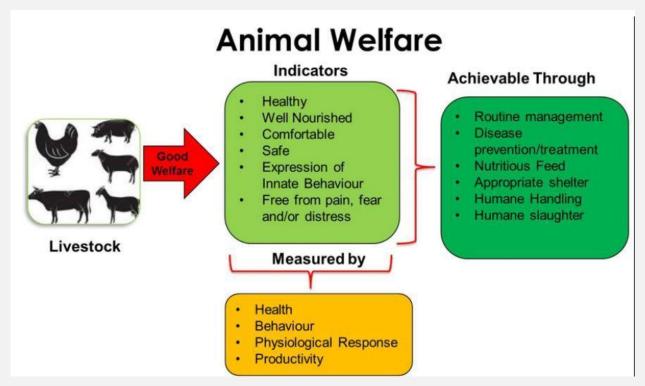


Figure 8 A summary of good welfare indicators, how to achieve them and how they can be quantified (Njisane et al ,2020)

Figure 9 illustrates the effect of different kinds of stress on production performance and efficiency, with ultimate consequences reflected in the quality of the end product.

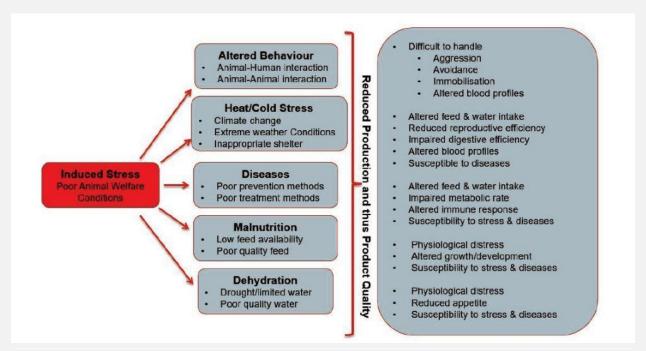


Figure 9 An illustration of poor animal welfare and stress indicators impacting on production and product quality (Njisane et al, 2020)

The Five Domains of Animal Welfare

The five domains of animal welfare are a more recent and comprehensive framework for assessing and improving animal welfare. Developed by Professor David Mellor and colleagues in the 1990s, these domains expand on the principles of the five freedoms by also considering animals' mental states, in addition to their physical needs.

- Nutrition (Physical Domain): This domain concerns access to adequate nutrition and hydration to meet the physiological needs of animals.
 Examples: Providing a balanced diet, avoiding under nutrition or over nutrition, and ensuring clean and constantly available water.
 Impact: Reduced hunger, thirst and nutritional imbalances, promoting optimal health.
- **2. Environment (Physical domain):** This domain includes physical living conditions, such as temperature, available space, and habitat safety.

Examples: Protect animals from extreme weather conditions, provide sufficient space for their movement and a clean resting place.

Impact: Avoid physical discomfort, injury or heat stress, contributing to their general well-being.

3. Health (Physical domain): This involves the prevention, diagnosis and treatment of disease, as well as the management of pain or injury.

Examples: Regular vaccinations, appropriate veterinary treatments, and management of chronic diseases.

Impact: Reduction of suffering, maintenance of good physical health and increased longevity.

4. Behaviour (Functional Domain): This field is concerned with the ability of animals to express natural behaviours and benefit from appropriate social interactions.

Examples: Allowing animals to explore, play, forage for food and interact with their peers in an enriched environment.

Impact: Reduction of frustration and abnormal behaviours, promoting a more fulfilling life.

5. Mental state (Affective domain): This field focuses on the emotional and cognitive experiences of animals, including positive sensations and the reduction of states of stress or fear.

Examples: Avoid rough handling, reduce anxiety-provoking situations, and provide pleasant experiences such as play or petting (depending on the species).

Impact: Promote positive emotional states such as comfort, security, and pleasure.

The first four areas (nutrition, environment, health and behaviour) directly influence the fifth, which is the animal's mental state. The goal is to ensure that animals not only live without suffering, but also benefit from positive experiences in their daily lives.

The Five Freedoms and the Five Domains of Animal Welfare are two complementary frameworks that aim to ensure animal welfare, but they differ in their scope and level of detail (Table 1).

Table 1 The core differences between the Five Domains and the Five Freedoms Source: (Daisy Sopel, 2021)

The Five Freedoms	The Five Domains
Freedom from hunger and thirst	Nutrition - giving sufficient, balanced, varied, and clean food and water.
2. Freedom from discomfort	Environment - comfort through temperature, substrate, space, air, odour, noise, and predictability.
3. Freedom from pain, injury and disease	3. Health - enabling good health through the absence of disease, injury, impairment with a good fitness level.
4. Freedom to express normal behaviour	4. Behaviour - providing varied, novel, and engaging enrichment through sensory inputs, exploration, foraging, bonding, playing, retreating, and others.
5. Freedom from fear and distress	5. Mental state - the animal should benefit from predominantly positive states, e.g., pleasure or comfort, while reducing negative states such as fear, frustration, hunger, pain, or boredom.

Animal Welfare in African Conditions

Developed countries have placed a high sense of concern for farm AW; it has been a rapidly growing area of interest over the years (Njisane and Muchenje, 2017). Regardless of some research-based recommendations that have been developed towards mitigating these concerns, some people generally perceive animal-based-food consumption as an inhumane act (Muchenje et al., 2018). While there are international animal welfare standards in the developed world, leading to improved management procedures, there are inherent factors that impede adoption of such in most developing regions, such as Africa. There is a need to acknowledge the geographical, climatic and systematic differences between the developed and developing worlds (Njisane and Muchenje, 2017). Some communities are uncertain about and unfamiliar with the animal welfare concept. Furthermore, there is limited research and published literature in this

area, based on African communities and practices (Fraser, 2008). According to Ndou et al., low priority is given to AW in the developing world and this can be related to traditional customs and beliefs, a lack of knowledge in animal handling and sub-standard handling facilities.

Multitudes of livestock are kept by large numbers of small-holder farmers and pastoralists, producing some of the food in Africa (Hoffman, 2010). Furthermore, small-scale farming plays an important role in the rural economy (Nyika, 2009). These are usually based in remote and/or rural areas, sometimes characterized by limited resources and access to some knowledge (Herrero, 2013).

Chulayo and Muchenje reported that animal welfare is generally associated with producers, retailers and the industry, with no consumer consideration, though it may affect their attitudes towards and purchase decision of certain products. Hence, the current status regarding awareness of AW matters disqualifies the region from import and export participation with the rest of the world, as reflected in a sluggish contribution towards economic growth (Scholtz et al., 2011).

Pastoral farming is another example of traditional practices found among some rural societies in East Africa (Gray et al., 2003). Furthermore, Degen reported that about 70%, 50%, and 40% of the total land in Kenya, Tanzania and Uganda, respectively, is occupied by pastoralists. In this system, the herdsman moves from one place to another with the livestock on foot, in search of feed and water.

Some African cultures perform slaughter on animals in their conscious state (Clottey, 1985), paying little/no attention to following the suggested humane handling or slaughter practices (Grandin, 2018).

Legal Framework for Animal and Fish Welfare in Tunisia

In Tunisia, the legal framework relating to animal welfare is still embryonic compared to some European countries. However, some legislative texts govern the protection of animals, particularly in agricultural and health contexts:

- The Tunisian Penal Code criminalizes acts of cruelty to animals, but the penalties remain relatively light.
- Law No. 2005-95 indirectly mentions the management of animals on farms and slaughterhouses.
- Law No. 2019-25 of February 26, 2019, relating to the health safety of foodstuffs and animal feed.

These regulations remain limited in terms of detail and strict enforcement. Ongoing reforms aim to strengthen animal welfare standards, particularly under the influence of international organizations'.

According to WOAH, the Tunisian agricultural sector, particularly livestock farming, plays a vital role in the economy. Animal welfare practices are often influenced by:

- The pastoral tradition, which gives a certain consideration to animals, particularly in terms of access to water and grazing conditions.
- Intensive livestock farming infrastructure, often associated with animal welfare issues such as overcrowding, inadequate slaughter conditions and heat stress, especially in summer.

MODULE 3 – INTRODUCTION TO FISH WELFARE

What is Fish Welfare?

It represents the "State of physical and biological balance where fish do not exhibit disease or excessive stress" (Conte, 2004). Fish should be able to swim, hide, forage for food and interact socially as they would in the wild (Brown et al., 2011).

Main Factors Influencing Fish Welfare

- **Water quality:** Parameters such as dissolved oxygen, temperature, pH and ammonia must be maintained at optimum levels (FAO).
- **Stocking density:** Overcrowding can cause stress, increase disease risk and restrict movement (WOAH).
- **Feeding:** Fish require adequate feed quantity and quality to meet their energy and nutritional needs (Ashley, 2007).
- **Handling and transport:** Practices should *minimise* stress and injury (RSPCA).
- **Disease prevention:** Rigorous health monitoring reduces the risk of spreading diseases (Huntingford et al., 2006).

Benefits of Improved Aquaculture Fish Welfare

The implementation of better protection of fish in aquaculture offers many benefits, both for the fish themselves, for producers, and for consumers. These benefits cover ethical, economic, environmental and product quality aspects.

- Improved fish welfare: Healthy fish, living in an environment that respects
 their biological and behavioural needs, have less stress, less disease, and
 reduced mortality. This promotes the expression of natural behaviours,
 contributing to more respectful animal husbandry (Ashley, 2007).
- 2. **Increased productivity:** Good fish health allows for faster growth and better feed conversion, thereby reducing production costs. Reducing losses due to disease or poor conditions improves yields (Huntingford *et al.*, 2006).

- 3. **High quality of aquaculture products:** Fish raised under optimal conditions produce better quality meat, with improved texture, flavour and nutritional composition. Consumers are increasingly favouring products from ethical and sustainable aquaculture (Conte, 2004).
- 4. Reduced costs related to illness: Better protection limits the occurrence of pathologies, which reduces the costs related to treatments (antibiotics, vaccines) and economic losses due to mortality. Example: Biosecurity and health protocols help prevent epidemics (FAO, 2020).
- 5. Compliance with regulations and certifications: Meeting animal welfare standards helps meet legal requirements and benefit from certifications (such as ASC, Global GAP). These labels increase the value of products on international markets. Example: The Aquaculture Stewardship Council (ASC) certification includes welfare criteria for fish (WOAH, 2021).
- 6. **Environmental sustainability:** Systems that protect fish often involve efficient management of resources (water, feed, energy), thereby reducing environmental impact. Healthy fish require fewer antibiotics, which reduces the risk of antimicrobial resistance and pollution (FAO, 2020).
- Improving the perception of aquaculture: Ethical and welfare-focused aquaculture attracts public support and builds consumer trust in the industry. Example: Animal welfare awareness campaigns contribute to transparency and social acceptance of aquaculture practices (RSPCA, 2021).

Introduction to Fish Welfare Practices

Fish welfare has become a major concern in the aquaculture, fisheries and scientific research sectors. Fish, as sensitive vertebrates, experience pain, stress and other forms of distress, which calls for responsible and ethical management of their living conditions. In aquaculture, fish welfare is directly linked to their health, growth and the quality of the products produced by this industry (Huntingford et al., 2006).

Fish welfare practices involve providing an environment that meets the physiological, behavioural, and social needs of fish. This includes water quality control, disease prevention, adequate stocking density, and appropriate feeding. These measures are not only beneficial to the fish, but are also essential to ensure sustainable and profitable production (Ashley, 2007).

Adopting welfare-focused practices not only helps meet consumer expectations for ethics and sustainability, but also helps comply with increasingly stringent international animal welfare regulations (WOAH, 2021).

Fish Welfare in Tunisia

Tunisia, as a member of the OIE, is gradually adopting certain international standards in terms of animal welfare.

Tunisia is also concerned with the welfare of marine animals, particularly in connection with fishing and aquaculture (FAO):

- Artisanal fishing: It can have indirect impacts on protected marine species, such as sea turtles. Small-scale fishing represents a large part of fishing activity in Tunisia, but practices can cause significant stress to fish:
 - Long delays between capture and killing, leading to prolonged suffering.
 - Use of nets that cause injuries and accidental mortality for non-target species (turtles, dolphins).

In industrial fishing, the conditions of large-scale capture, such as trawling, exacerbate stress and physical damage.

 Aquaculture: Awareness of ethical practices in fish farming is beginning to emerge, although the concept of marine animal welfare remains relatively new.

Aquaculture in Tunisia is booming, particularly for species such as sea bass, sea bream and Bluefin tuna. However, several aspects pose challenges to the welfare of the fish:

a) Breeding conditions

- Excessive density: Fish are often raised in overcrowded cages or ponds, limiting their mobility and increasing their stress.
- Water quality: Pollution or poor management of environmental parameters can lead to disease and mass mortality.

b) Handling and transport

- Transport: Fish undergo considerable stress during transfer between farms and markets, often without adequate protective measures.
- Vaccination and treatments: Handling during treatments can be rough and prolong their suffering.

c) Slaughter

Slaughter methods remain rudimentary, with little use of techniques such as electro-anaesthesia or rapid cooling, which could reduce suffering.

FAO is working with Tunisia to improve the sustainability of aquaculture systems and reduce harmful practices. In Tunisia, laws specific to fish welfare are still limited and embryonic. However, several legislative texts and indirect regulations govern aspects related to fish protection, mainly in the areas of fisheries, aquaculture, and marine conservation. Here is an overview of the relevant laws and regulations:

• Law No. 94-13 of January 31, 1994 relating to the exercise of maritime fishing: This law governs the exercise of maritime fishing, including the management of fishery resources and the preservation of marine ecosystems. It prohibits certain destructive practices (such as fishing with explosives or toxic substances) that can inflict unnecessary suffering on fish. It establishes periods of biological rest to allow reproduction and preserve populations.

Limitations: It does not explicitly address aspects related to the suffering or welfare of captured fish.

- Decree No. 94-1744 of August 29, 1994 establishing the conditions for exercising maritime fishing: This decree supplements law no. 94-13 and establishes technical rules for maritime fishing, such as the types of fishing gear authorized. Banning certain fishing nets and techniques reduces destructive impacts on fish and non-target species.
 - Limitations: Lack of specific clauses on practices that respect the welfare of fish during and after their capture.
- Law No. 2009-49 of July 20, 2009 relating to protected marine areas: This law
 aims to create and manage marine protected areas for the conservation
 of marine biodiversity. Protected areas provide refuges where fish can live
 and reproduce without the pressure of fishing. It indirectly contributes to fish
 welfare by limiting human disturbance in these areas.
- Law No. 2005-95 of October 18, 2005 relating to food safety: This law deals with health standards in food chains, including the production and processing of aquaculture fish. Indirectly, it encourages the maintenance of optimal breeding conditions to guarantee the quality of the products, such as good water quality and adequate feed for the fish. However, it does not address the conditions of handling and slaughter.
- Law No. 2010-49 of July 7, 2010 on organic products: This law promotes organic production systems, including aquaculture. Organic farming imposes stricter standards for fish density in ponds and the use of environmentally friendly methods, which indirectly promotes their wellbeing.

The welfare of aquaculture fish is gaining recognition in Tunisia, but specific laws are still being developed. Recent discussions on the adoption of international standards (notably from the WOAH) show a willingness to evolve.

Question & Answer Session

- How to raise awareness among fishermen and aquaculturists about the importance of fish welfare?
- What are the economic and ecological benefits of improving fish welfare in Tunisia?
- Why is the welfare of fish less taken into account than that of terrestrial animals in Tunisian policies?
- What international partnerships could help Tunisia strengthen its fish welfare practices and laws?
- What is the perception of local communities regarding fish welfare?
- Is the Tunisian consumer ready to pay a premium price for aquatic products that meet animal welfare standards?

MODULE 4 – GROWING SYSTEMS AND FISH WELFARE

Modern aquaculture relies on growth systems that optimize production while ensuring fish welfare. These systems, whether intensive or extensive, directly influence the health, growth, and quality of life of fish. Appropriate management is essential to meet the biological and ethical challenges associated with fish farming.

Site Selection

The selection of an aquaculture site is a crucial step in planning an aquaculture project. It influences not only productivity, but also the sustainability of the activity and the welfare of the fish. A rigorous analysis of environmental, economic and social criteria is essential to ensure the success of the project while respecting the regulations in force.

1. Environmental Criteria

a) Water quality

Water quality is a critical factor in fish health and growth. Key parameters include:

- Temperature: Should be appropriate to the needs of the species being farmed. For example, tilapia thrive at 25–30°C.
- Dissolved oxygen: Adequate oxygen levels are crucial to avoid fish stress and mortality.
- pH: Most aquaculture species prefer a pH between 6.5 and 8.5.
- Salinity: Should be compatible with the species (fresh, brackish or marine).
- Nutrient loading: Ammonia and nitrite levels should be controlled to avoid toxicity.

Timmons and Ebeling (2010) emphasize the importance of constant monitoring of water quality to ensure animal welfare and productivity.

b) Topography and geology

The site should have a topography that allows for natural drainage and *minimizes* excavation costs. The soil should be impermeable for ponds to prevent excessive water infiltration. Clay soils are ideal for pond systems. Boyd (1998) points out that soil composition influences water retention and maintenance costs.

c) Climate

Local climatic conditions (temperature, precipitation, wind, seasonality) must be adapted to the species being farmed. For example, tropical areas are ideal for species such as tilapia and shrimp. FAO (2020) indicates that climatic conditions determine production cycles and influence the profitability of aquaculture systems.

d) Availability and quality of water resources

A reliable source of water is essential, whether from a river, lake, borehole or the sea. Water must be available in sufficient quantities to meet livestock needs throughout the year. According to Bunting and Pretty (2007), the sustainability of aquaculture systems depends on access to a stable and quality water resource.

2. Socio-economic Criteria

a) Proximity to markets and infrastructure

The site should be located near roads, markets, or ports to facilitate product distribution. Infrastructure, such as electricity and processing facilities, should be accessible. Edwards (2000) explains that strategic location can reduce transportation costs and increase overall profitability.

b) Cost of land and legal access

The cost and availability of land should be compatible with the project budget. Verify that the site complies with local regulations, particularly regarding land use and environmental protection. FAO (2020) emphasizes that legal compliance is a key element to avoid litigation and ensure the sustainability of the project.

c) Social acceptance

Aquaculture can have social and environmental impacts. It is important to consult with local communities to ensure they support the project. Hambrey and Evans (2016) recommend a participatory approach to minimize conflict and maximize benefits for local people.

3. Risk Assessment

a) Environmental risks

Assess the risks of pollution of surrounding waters, soil erosion, or introduction of invasive species. Boyd et al. (2020) remind that aquaculture practices must respect the principles of environmental sustainability to avoid long-term negative impacts.

b) Climate risks

Identify risks associated with extreme weather events, such as floods, droughts, or storms. Timmons and Ebeling (2010) advice choosing sites outside flood zones and planning mitigation measures.

c) Long-term economic viability

Analyze profitability projections taking into account initial costs and operating expenses. Bunting and Pretty (2007) emphasize the importance of feasibility studies to ensure a favorable return on investment.

Selecting an aquaculture site requires a multidimensional approach that takes into account environmental, social and economic criteria. A well-chosen site contributes not only to the economic success of the project, but also to sustainability and compliance with animal welfare standards.

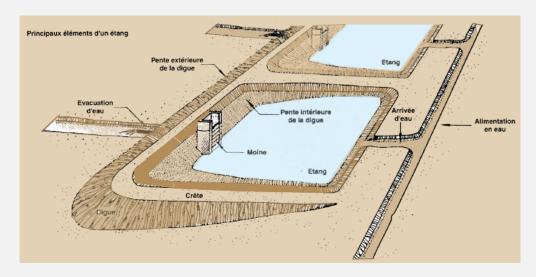
Rearing Systems

Aquaculture farming systems are diverse and meet specific objectives depending on the species being farmed, available resources and environmental conditions. Each system has advantages and challenges related to sustainability, fish welfare and productivity.

Here is a clear and structured summary table on the different aquaculture farming systems:

Table 2 Summary of different aquaculture farming systems

System type	Features	Benefits	Limits	References
	- Little human	- Low cost	- Limited	Boyd et Tucker
	intervention	- Respects	production	(1998)
Extensive system	- Based on	natural cycles	- Vulnerability to	
	natural resources		environmental	
	(food, oxygen,		variations	
	etc.)			
	- Partial food	- Higher yield	- Dependence	FAO (2020)
	supplements	than extensive	on external	
Semi-intensive	- Moderate	- Compatible	resources	
system	control of	with traditional	- Pollution risks	
	environmental	practices		
	parameters			
Intensive system	- Strong human	- High efficiency	- High costs	Timmons et
	intervention	- Precise control	- Potential	Ebeling (2010)
	(artificial	of environmental	environmental	
	feeding,	parameters	impacts	
	advanced			
	technology)			
	- Strict control			
	- Use of natural	- Low cost	- Limited control	Boyd (1998)
	or dug water	- Suitable for	of parameters	
Pond system	bodies	hardy species	(temperature,	
	- Semi-natural	(e.g. tilapia)	oxygen)	
	environment			
	- Cages placed	- Low installation	- Exposure to	Conte (2004)
	in natural bodies	cost	predators	
Floating cage	of water (fresh or	- Efficient use of	- Dependence	
system	marine water)	water bodies	on natural	
	- Exploitation of		conditions	
	the existing			
	environment			


RAS	- Closed system	- Reduced water	- High initial cost	FAO (2020)
(Aquaculture	with filtration and	usage	- Dependence	
Recirculation)	water recycling	- Full control of	on technological	
System	- Continuous	parameters	equipment	
	monitoring			
	- Integration of	- Joint	- Requires high	Rakocy et al.,
	aquaculture and	production (fish	technical	(2006)
Aquaponics	hydroponics	+ plants)	expertise	
	- Nutrient	- Resource	- Requires	
	recycling	efficiency	precise nutrient	
			management	

Common Growing Facilities and Welfare Considerations

Culture facilities play a central role in aquaculture, directly influencing fish welfare. The design, management and environmental parameters of these facilities are crucial to reduce stress, promote fish health and optimize production.

1. Common Growing Facilities

• The ponds: Ponds are natural or artificial bodies of water suitable for hardy species such as tilapia and carp. They have the advantage of being inexpensive and compatible with natural cycles, but offer limited control over environmental parameters such as temperature or oxygen. In addition, they are vulnerable to climatic variations (Boyd, 1998) (Figure 10).

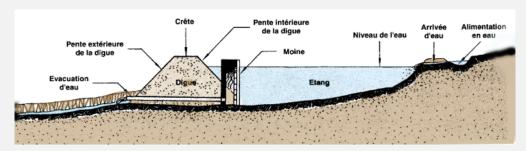


Figure 10 A fish pond (FAO)

• Floating cages: Floating cages are mesh structures installed in natural bodies of water such as lakes, rivers or the sea. They are often used for salmon and efficiently exploit natural aquatic resources. However, they are associated with increased risks of predation and sensitivity to environmental variations (Conte, 2004) (Figure 11).

Figure 11 Floating cage in Tunisia (ctaqua.tn)

 Concrete basins: Concrete ponds are artificial structures that allow precise control of water and fish. Their design facilitates harvesting and offers high control of environmental parameters, but construction costs and dependence on water management systems are high (FAO, 2020) (Figure 12).

Figure 12 Concrete basin at the Tilapia breeding station in Bechima, Tunisia (ctaqua.tn)

Recirculating systems (RAS): provide continuous water filtration and full
control of environmental parameters. They reduce water usage and are
compatible with high fish densities. However, these systems require high
installation and maintenance costs, as well as technical expertise to
manage failure risks (Timmons and Ebeling, 2010) (Figure 13).

Figure 13 RAS system in aquaculture (asc-aqua.org)

 Raceway systems: consist of elongated channels with a continuous flow of water, often used for cold-water species such as trout. They provide excellent water oxygenation and allow intensive production, but require a constant water flow and complex effluent management (Boyd and Tucker, 1998) (Figure 14).

Figure 14 Fish Raceway (aquaportail.com)

• Aquaponics: Aquaponics combines aquaculture and hydroponics, allowing dual production of fish and plants. This system has a low environmental impact, but it requires technical expertise and complex nutrient management (Rakocy et al., 2006) (Figure 15).

Figure 15 Aquaponics System (ctaqua.tn)

2. Fish Welfare Considerations

Water quality is crucial, as inappropriate parameters such as low oxygen, incorrect pH or high ammonia levels can cause stress and disease. Regular monitoring of these parameters and the use of effective filtration systems are recommended (Boyd and Tucker, 1998).

Stocking density also plays an important role. High densities can lead to stress, aggressive behaviour and rapid spread of disease. Therefore, it is essential to adapt the density to the species and the conditions of the facility (Huntingford et al., 2006).

Water oxygenation is another key factor. Low oxygen levels can cause rapid mortality. The installation of suitable aerators or oxygenation systems is recommended (Timmons and Ebeling, 2010).

Feeding management is essential to avoid underfeeding or overfeeding, which can cause stress and metabolic imbalances. It is advisable to provide a balanced diet adapted to the needs of the species (FAO, 2020).

Handling of fish should be *minimised* to reduce injuries and stress. The use of suitable equipment is crucial to ensure their welfare (Conte, 2004).

Disease control relies on strict biosecurity practices, as well as responsible use of antibiotics and vaccines to limit the risks of spread (Huntingford et al., 2006).

Finally, environmental enrichment, for example by adding structures that simulate the natural habitat such as rocks or artificial vegetation, can improve welfare by reducing abnormal behaviours (Braithwaite *et al.*, 2006).

Stocking Density

Stocking density (kg fish/m³) describes the biomass of fish per unit of water in the rearing system. Optimal stocking densities is based on several factors such as type of fish species, life stages, growing systems, water flow rates and can also depend

on the environmental conditions. It is also one of the main characteristics that determine whether a fish farm is extensive or intensive. It can have a major impact on fish welfare, as it influences water quality, growth, stress status and social interactions – such as aggression among the fish. For example, if you manage to maintain high water quality that means you can increase the biomass or stocking density. However, if you don't maintain high water quality, you will need to lower stocking density else, this will lead to stress, and in extreme cases, death of fish.

For species like rainbow trout, other salmonids, tilapia and catfish, successful rearing is generally possible at densities in which all fish of the rearing unit form a community. Such fish species thrive best in groups and may develop dominant and aggressive behavior if there is too high or too low stocking densities, or if there is one gender only. Because of this, deciding stocking densities on a fish farm is not a simple discussion to have, even though farmers usually prefer higher stocking densities as they assume this would automatically increase their production capacity.

However, from research and experience, stocking density should be carefully considered and should always be backed up by research and welfare guidelines.

How to Measure Stocking Density

To find the current stocking density of an already stocked growing system, one needs to have the following preliminary information:

- 1) The volume of water in the growing system,
- 2) The volume of the growing system, and
- 3) The number and weight of the fish stocked.

To calculate stocking density, the simple formula is:

Total number or weight/biomass of fish stocked

Volume of water in the growing system

= either Biomass/volume or number/ volume.

Using biomass is preferable because it captures the growth current state of the fish better than mere numbers. For instance, 10 fish weighing 500g each will occupy more space than 10 fish weighing 100 g each, thus using numbers without a regard for the growth stage can be misleading.

So, with this formula, it is assumed that in a pond with total volume of 10,000 litres of water carrying 6,000 litres of water with 1,500 fish weighing 400g each, Total biomass= $400g \times 1500 = 600,000g$ (600kg)

Stocking density will be = 600,000/6,000 = 100g of fish per litre of water

Therefore, the stocking density of that growing system will be 100g of fish per litre (going by weight/biomass of fish) of water or ¼ fish per litre (going by number of fish). Before embarking on fish farming, the stocking density for the desired species (established by research and guidance) must be known and strictly adhered to. Furthermore, the feeding habits and natural behaviors of the species in question must be known and factored into the stocking density computations as this will enhance productivity and welfare.

Recommended Stocking Densities

1. Freshwater species

- Tilapia (Oreochromis spp.):
 - Ponds: 20-50 kg/m³. This density depends on aeration and water quality. Mechanical aeration can increase pond capacity. (Boyd, 1998)
 - Recirculating systems (RAS): Up to 100 kg/m³, with careful management of dissolved oxygen and organic loads (Timmons and Ebeling, 2010).
 - o Impact on welfare: Above 100 kg/m³, the risk of stress and disease increases, with impacts on growth and survival (El-Sayed, 2006).

- Common carp (Cyprinus carpio):
 - Ponds: 10-20 kg/m³, suitable for semi-intensive systems where carp feed partially on natural sources (FAO, 2020).
 - Intensive ponds: 30-50 kg/m³, ensuring constant oxygenation (> 4 mg/L) (Boyd and Tucker, 1998).
- Rainbow Trout (Oncorhynchus mykiss):
 - Raceways: 20-60 kg/m³, with a constant flow of water allowing for optimal oxygenation. (Conte, 2004)
 - RAS: Up to 80 kg/m³, but requires strict control of ammonia and nitrite.
 (Timmons et Ebeling, 2010)

2. Marine species

- Atlantic salmon (Salmo salar):
 - Floating cages: 10-20 kg/m³. Densities vary with depth and sea currents. Insufficient oxygenation can cause significant mortalities (Braithwaite et al., 2006).
 - RAS: Up to 80 kg/m³. Recirculating systems are particularly suitable for reducing environmental impact and improving yields (Timmons and Ebeling, 2010).
- European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata):
 - Floating cages: 15-25 kg/m³, with attention to temperature variations and currents (FAO, 2020).
 - RAS: 40-70 kg/m³. These densities require careful management of the balance between oxygen and waste (Rakocy et al., 2006).
- Shrimp (Litopenaeus vannamei):
 - Semi-intensive ponds: 5-10 ind./m², with additional nutritional support.
 (FAO, 2020)

Intensive systems (Biofloc): 300-500 ind./m³, where bioflocs act as an additional source of nutrition and improve water quality.
 (Avnimelech, 2012)

Question & Answer Session

- How do stocking densities affect oxygenation requirements in different systems (ponds, RAS, raceways)?
- What are the most reliable biological indicators for detecting densityrelated stress?
- Are there specific species that tolerate high densities better due to their social behaviour?
- How can RAS systems reduce the environmental impact of high densities?
- How does energy consumption vary between open systems (cages) and closed systems (RAS)?
- To what extent can artificial intelligence and automation optimise the management of aquaculture systems?
- Are there hybrid models that combine the advantages of several systems,
 such as aquaponics integrated into a RAS?

MODULE 5 – WATER QUALITY AND FISH WELFARE

Water quality is a key factor influencing the growth, health and welfare of fish in aquaculture. Each farming system (ponds, floating cages, raceways, recirculating systems) imposes specific requirements on water quality. An imbalance in physicochemical parameters can lead to stress, diseases and even high mortality.

Essential Water Quality Parameters

- Dissolved Oxygen (DO): Essential for fish respiration and microbial activity.
 - A minimum concentration of 5 mg/L is generally required,
 although some species tolerate lower levels.
 - DO levels can be optimized by mechanical aeration (diffusers, paddle wheels) and water flow management (especially in raceways and RAS) (Boyd & Tucker, 1998).
- Temperature: Depends on the specific needs of each species (e.g.: trout: 10-18°C; tilapia: 24-30°C).
 - A large deviation can slow growth, induce stress and promote disease.
 - In closed systems such as RAS, heat exchangers can be used to stabilize the temperature (Timmons & Ebeling, 2010).
- pH: Most fish tolerate a pH between 6.5 and 8.5.
 - Too low a pH (<6) can cause osmotic stress, while too high a pH (>9) increases ammonia toxicity.
 - Adding calcium carbonate (CaCO₃) to ponds helps buffer pH variations (FAO, 2020).
- Ammonia (NH_3/NH_4^+) and Nitrites (NO_2^-): Un-ionized ammonia (NH_3) is toxic even at low concentrations (>0.05 mg/L).
 - Nitrites (>0.2 mg/L) affect the blood's ability to carry oxygen (brown blood disease).

- o In RAS, biofiltration (biological filters) is essential to convert ammonia to nitrates (NO₃⁻), which are less toxic (Boyd, 1998).
- Hardness and Alkalinity: Moderate hardness (50-150 mg/L CaCO₃)
 promotes good ionic balance for fish.
 - Sufficient alkalinity (>50 mg/L) is necessary to stabilize pH and provide carbonates to nitrifying bacteria (Boyd et al., 2016).
- Suspended Matter and Turbidity: Excessive turbidity can impair fish respiration and limit light penetration (impacting photosynthesis in ponds).
 - The use of decanters and mechanical filters is recommended to reduce suspended matter (Timmons & Ebeling, 2010).
- Salinity: Essential for certain species such as sea bass or salmon, which require water adapted to their growth phase.
 - Poorly controlled salinity can cause significant osmotic stress (FAO, 2020).

Table 3 Water Quality Management in Aquaculture Systems

System	Water quality benefits	Disadvantages and challenges
Ponds	Natural balance of nutrients,	Risk of eutrophication,
	natural biological regulation.	variations in temperature and
		oxygen.
Floating cages	Access to natural water, good	Vulnerability to external
	water renewal.	pollution and uncontrollable
		environmental conditions.
Raceways	Good oxygenation due to	Dependence on a clean and
	constant flow.	abundant water source,
		effluent management.
RAS (Recirculation)	Full control of parameters, low	High costs, need for rigorous
	water consumption.	maintenance of biofilters and
		aeration systems.

Aquaponics	Waste reduction through	Complex management of
	integration with plant	nutrient balances for fish and
	cultivation.	plants.

Best Practices for Maintaining Optimal Water Quality

Water quality is one of the most important factors contributing to fish health and their entire existence is dependent on the water environment they live in. This makes fish very sensitive to pollution and poor water quality issues. On the other hand, they will flourish and be in good health in a good water environment that is optimal for them. To ensure good water quality for optimal fish health and welfare, the following must be taken into consideration:

- Regular monitoring: Use of automatic sensors and analysers to measure oxygen, ammonia and pH.
- Efficient ventilation: Installation of aerators to maintain an optimal oxygen level, particularly in intensive systems.
- Biofiltration in RAS: Use of biological filters to transform ammonia into nitrates.
- Effluent management: Installation of sedimentation basins or mechanical filters to limit pollutant discharges.
- Feeding control: Avoid overfeeding which promotes the accumulation of organic waste and toxic compounds.
- Thermal variation management: Use of heating or cooling equipment in closed systems.
- Infrastructure maintenance: Regular cleaning and disinfection to prevent the accumulation of harmful pathogens and biofilms.

Rigorous water quality management is essential to ensure optimal growth and limit stress and diseases of fish in aquaculture. Each system imposes specific challenges, requiring adapted strategies to maintain ideal conditions. Automation and technological innovation now offer advanced solutions for

better control of water parameters, thus reducing environmental impacts and improving the sustainability of aquaculture.

Life Stages and Species-Specific Considerations

Water quality requirements vary for different species of fish and even for the different stages of their life cycles. The following table presents general water quality parameter required for farmed Sea Bass, Sea Bream and Tilapia:

Table 4 Water quality parameters for sea bass, sea bream and tilapia

Species	Temp. (°C)	Dissolved Oxygen (mg/L)	рН	Salinity (‰)	Total Ammonia mg/L)	References
Sea Bass (Dicentrarchus Iabrax)	15-25	> 5	7.5 - 8.5	30 – 40	< 0.02	FAO (2020), Espinosa et al. (2015)
Sea Bream (Sparus aurata)	18 - 28	> 5	7.5 - 8.5	30 - 40	< 0.02	FAO (2020), Tacon & Metian (2015)
Nile Tilapia (Oreochromis niloticus)	24 - 32	> 4	6.5 - 8.5	0 – 5	< 0.05	Boyd (1998), El-Sayed (2006)

Sea bass and sea bream welfare and water quality

The sea bass (*Dicentrarchus labrax*) and the gilthead sea bream (*Sparus aurata*) are two major species in Mediterranean aquaculture, particularly in Tunisia. Their well-being is closely linked to the quality of the water in which they live.

Table 5 Comparison between sea bass and sea bream welfare parameters

Parameter	Sea bass	Sea bream	Impact of welfare
Temperature (°C)	15-25	18-28	Temperature outside this range can cause stress,
			reduced growth and increased mortality (FAO,
			2020).
Dissolved Oxygen	> 5	> 5	Too low a rate leads to hypoxia, stress and
(mg/L)			abnormal behaviors (Espinosa et al., 2015).

На	7.5 - 8.5	7.5 - 8.5	An inappropriate pH affects respiration and osmoregulation (Tacon & Metian, 2015).
Salinity (‰)	30 - 40	30 - 40	Extreme variations can cause osmotic stress (FAO, 2020).
Total Ammonia (mg/L)	< 0.02	< 0.02	High concentrations of ammonia are toxic, causing gill lesions and stress (Boyd, 1998).
Turbidity	Moderate	Moderate	Excessively turbid water reduces visibility and impairs feeding behavior (Huntingford et al., 2006).

How to Measure and Correct Water Quality Parameters

Measuring water quality is essential for maintaining a healthy aquatic environment. Farmers can use various testing kits, electronic meters, or send samples to a water quality laboratory for more comprehensive analysis. For use of test kits and meters, follow the instructions provided on the kit for accurate measurements.

Table 6 How to solve some identified problems in water quality parameters

Parameter	Identified problem	Corrective solution	
Temperature	Too high or too low	Adjust heating or ventilation, use heat	
		exchangers	
Dissolved Oxygen	Low level	Add aerators or inject pure oxygen	
рН	Too acidic (< 7) or too basic	Add baking soda (to raise pH) or	
	(> 9)	vinegar/hydrochloric acid (to lower it)	
Salinity	Too high or too low	Adjust with fresh water or sea water	
Ammonia (NH ₃)	High rate	Improve biological filtration, reduce	
		feeding, increase aeration	
Nitrites (NO ₂ -)	High rate	Partially change the water, strengthen	
		biological filtration	
Nitrates (NO ₃ ⁻)	High rate	Increase water changes, promote	
		aquatic plants or algae in the system	
Turbidity	Cloudy water	Adjust power supply, improve mechanical	
		filtration	

Proactive and rigorous management of water quality helps ensure fish health and optimize the profitability of aquaculture farms.

Question & Answer Session

- What are the most important physicochemical parameters for water quality in aquaculture?
- What are the main water pollutants in aquaculture and how can they be controlled?
- How to optimise water oxygenation in different aquaculture systems?
- What are the advantages and disadvantages of recirculation systems for water management?
- What are the effects of low dissolved oxygen on fish behavior?
- How do aquaponics systems improve water quality management?

MODULE 6 - FEEDING AND FISH WELFARE

Feeding is a crucial factor for the growth, health and welfare of fish in aquaculture. Effective feeding management not only optimizes zootechnical performance but also limits environmental and economic impacts.

Food choice

- Species-specific formulation: Nutritional requirements vary among species and growth stages. It is essential to provide a diet rich in specific proteins, lipids, carbohydrates, vitamins and minerals (NRC, 2011).
- Pellet size and texture: Feed size should be appropriate for the fish's mouth to ensure efficient ingestion and reduce wastage (FAO, 2020).
- Use of quality ingredients: Favor digestible protein sources to minimize nitrogen and phosphorus emissions (Tacon & Metian, 2008).
- Sustainable alternatives: Incorporating plant or insect proteins to reduce reliance on fishmeal and fish oil (Henry et al., 2015).

Ration management and feeding frequency

- Respect for physiological needs: Adapt the food ration according to the species, age, water temperature and breeding method (Kaushik & Troell, 2010).
- Feeding frequency:
 - ✓ Fry: 4 to 6 meals per day
 - ✓ Juveniles: 2 to 4 meals per day
 - ✓ Adults: 1 to 2 meals per day
- Consumption control: Observe eating behavior to adjust rations and avoid overfeeding.

Adapted feeding techniques

 Manual feeding: Ideal for observing fish and adjusting rations according to their appetite.

- Vending machines: Ensure regular and controlled distribution,
 reducing stress and competition.
- Demand feeding: Allows fish to self-regulate by activating a distribution mechanism (Brett & Groves, 1979).

Impact of food on water quality

- Reducing discharges: Adjust the amount of feed distributed to avoid the accumulation of organic matter (Boyd & Tucker, 1998).
- Optimising feed conversion ratio (FCR): A low FCR indicates better nutrient assimilation and reduced environmental impact (Timmons & Ebeling, 2010).

Adaptation to species-specific needs

- Carnivorous species (e.g. sea bass, trout, salmon): High requirement for animal protein (40-50%).
- o Omnivorous species (e.g. tilapia, carp): Mixed diet with a balance between animal and vegetable proteins.
- Herbivorous species (e.g. some carp, mullet): Rich in plant fiber and protein (FAO, 2020).

Composition and Quality of Feed Ingredients

The quality of ingredients used in fish feed directly influences their growth, health and the environmental impact of aquaculture:

Table 7 Feed ingredients for fish

Category	Description
	Animal origin: Fishmeal and oil: rich in essential amino acids,
	expensive and limited availability.
	Fishing by-products: sustainable recovery of processing co-products.
Proteins	Plant origin: Soy, peas, algae: sustainable alternatives, possible
	antinutritional factors.
	Proteins from insects: High digestibility and good amino acid profile
	(Henry et al., 2015).
	Omega-3 and Omega-6: Essential for growth and immune health.

	Marine sources: Fish oil: well assimilated but high environmental
Lipids	impact.
2.6.0	Plant-based alternatives: Linseed oil, microalgae oil: rich in
	polyunsaturated fatty acids (Tacon & Metian, 2008).
	Energy sources: Wheat, corn, potato starch.
Carbohydrates	Adaptation according to species: Limited tolerance for carnivorous
	species.
	Essential for growth, immunity and reproduction.
Vitamins and minerals	Supplementation: Essential to avoid nutritional deficiencies (NRC,
	2011).
	Probiotics and enzymes: Improve digestion and assimilation of
	nutrients.
Food additives	Pigments: E.g. astaxanthin: influences the colour of fish-like salmon.
	Antioxidants and preservatives: Ensure food stability and
	preservation (Merrifield et al., 2010).

Question & Answer Session

- What are the specific nutritional needs of farmed species, and how are they integrated into feed formulation?
- How do alternative ingredients, such as plant or insect proteins, affect fish growth and health?
- How do meal frequency and distribution methods influence fish feeding behaviour and welfare?
- What are the key water quality parameters to monitor, and how does diet influence these parameters?

MODULE 7 – FISH WELFARE DURING HANDLING AND TRANSPORTATION

Fish handling and transport are critical steps that can lead to stress, injury and loss if not properly controlled. A careful approach, based on appropriate protocols, can reduce negative impacts and ensure the viability of fish after transport (Ashley, 2007).

Stress Factors during Handling

Fish are particularly sensitive to interactions with their environment and physical disturbances. Major stressors include:

- Rough capture and handling: Excessive or improper handling can cause bruising, skin damage, and loss of protective mucus, increasing the risk of infections (Harmon, 2009).
- **Time out of water:** Fish do not have structures to breathe air, so prolonged out-of-water exposure can lead to asphyxiation and physiological imbalances (Ross & Ross, 2008).
- Water temperature: Sudden temperature changes between tanks and handling areas can cause thermal shock and affect fish metabolism (Ashley, 2007).
- **Dry handling:** Fish have protective mucus that is essential to their health. Handling with dry hands or on rough surfaces can damage this natural barrier (Harmon, 2009).

Transportation and Fish Welfare

Fish transport is a critical step in aquaculture, influencing their welfare, health and survival. Poorly managed transport can result in acute stress, injury, reduced water quality and, in extreme cases, high mortality (Harmon, 2009). It is therefore essential to apply rigorous protocols to minimise these negative effects.

• Stress Factors During Transportation: Transport exposes fish to several sources of stress, which can impact their physiology and behaviour:

- Excessive handling: Capturing, sorting, and containerisation can cause injury and loss of protective mucus, increasing susceptibility to infections (Ross & Ross, 2008).
- High stocking density: Overcrowding in transport containers leads to competition for oxygen, accumulation of metabolic wastes, and increased stress (Harmon, 2009).
- Variations in water parameters: Sudden changes in temperature,
 oxygen, pH, or salinity can cause physiological shock (Ashley, 2007).
- o Transport duration: The longer the journey, the greater the risk of stress, exhaustion, and mortality (Harmon, 2009).
- Vibration and movement: The jolts and noise of transport disrupt the balance of fish and increase their stress levels (Ross & Ross, 2008).

Best Practices for Safe and Humane Transportation

1. Preparation before transport

- Pre-fasting: It is recommended not to feed fish for 12 to 48 hours before transport to limit waste production and improve water quality (Harmon, 2009).
- Gradual adaptation: Slowly adjust container water parameters to avoid thermal and osmotic shock (Ashley, 2007).
- Fish selection: Check the health of individuals and avoid transporting sick or injured fish (Ross & Ross, 2008).

2. Optimal transport conditions

- Proper Stocking Density: Stocking density should be adjusted based on species, temperature, and duration of transport to minimise stress and asphyxiation (Harmon, 2009).
- Oxygenation: Maintain dissolved oxygen concentrations above 5 mg/L using oxygen diffusers or air injection (Ashley, 2007).

- Temperature Control: Use coolers or cooling systems to maintain a stable temperature appropriate for the species being transported (Ross & Ross, 2008).
- Water Filtration and Treatment: Add agents such as salt (to reduce osmotic stress) or anti-ammonia to improve water quality (Harmon, 2009).
- Transport equipment: Use suitable containers, with rounded edges to avoid injury, and opaque containers to limit exposure to light and reduce stress (Ross & Ross, 2008)

The transport of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) raised in Tunisia follows strict protocols to minimise stress and ensure their well-being.

3. Means of Transport

- Transport in on-board tanks: Fish are transferred into trucks equipped with tanks or reservoirs specially designed to maintain optimum water quality. These tanks are equipped with oxygenation and temperature control systems to reduce stress on the fish during transport. (figures 16 and 17).
- o Transport in plastic bags (for juveniles): Mainly used for juveniles or over short distances, this method involves placing the fish in bags filled with water and pure oxygen, then sealing them to ensure a controlled atmosphere.

Figure 16 Examples of trucks with oxygenated tanks to transport fish

Figure 17 Tanks to transport fish

4. Equipment Used

- Oxygenation Systems: Oxygen diffusers are installed in tanks to maintain adequate levels of dissolved oxygen, essential for the survival and well-being of fish (fao.org).
- Temperature controllers: Heating or cooling devices help maintain water at an optimal temperature, preventing thermal shock (linde.ch).
- Filtration systems: To remove waste and maintain proper water quality, mechanical and biological filters are integrated into the transport tanks.
- Monitoring Equipment: Sensors and monitors continuously measure water parameters such as temperature, pH and oxygen levels, allowing for real-time adjustments (aquaculturefrance.com).

Question & Answer Session

- What are the main stressors for fish during transport, and how can they be mitigated?
- How does loading density influence fish welfare during transport?
- What are the impacts of water temperature variations on fish health during transport, and what measures can be taken to control them?
- What specific training should operators undergo to ensure fish welfare during transport operations?

MODULE 8 – SLAUGHTERING & FISH WELFARE

Overview of Humane Fish Slaughter

Humane slaughter of fish aims to minimize their suffering during killing, by ensuring rapid loss of consciousness and avoiding unnecessary pain. However, current practices in the fish farming industry often fall far short of this ideal. In Europe, while regulations require terrestrial animals to be stunned before slaughter, fish do not always benefit from these protections. As a result, cruel slaughter methods, such as open-air asphyxiation, remain legal in some contexts, despite the suffering they cause (www.l214.com).

Guidelines on fish welfare during stunning and slaughter are offered by <u>WOAH's Aquatic Animal Health Code</u>, and all member states are expected to adapt it for their own slaughter guidelines. In response to this, some relatively humane slaughter methods have been developed. While many acclaimed humane methods are yet to be perfect, this is evidence of growth and evolution of completely inhumane methods which are out rightly unacceptable, and, in some places, banned. Generally accepted slaughter methods include those that utilize electrical stunning, since it allows for a rapid process and is evidenced to have minimal physical and biological effects on the fish.

Furthermore, it is highly recommended that stunning and slaughter of fish must be conducted by staff that have the technical capacity, training, and knowledge to utilize slaughter equipment, can recognize when effective stunning has taken place, and know how and when to re-stun, if necessary. They should receive periodic re-training, upskilling and evaluation of their stunning and slaughter methods, and keep records of these activities in the farm. This is especially important because fish slaughter equipment and methods are still evolving as fish welfare and industry professionals continue to make efforts to ensure a seamless and painless slaughter process.

Benefits of Humane Slaughter of Fish

It is important to note that unstunned slaughter is generally associated with increased suffering for animals. Fish, like other animals, experience pain and stress. Unstunned slaughter methods, such as open-air asphyxiation or ice bath immersion, can result in prolonged agony and significant distress for fish.

In contrast, pre-slaughter stunning aims to render the animal unconscious, so that it does not experience the pain and distress associated with incision and exsanguination during slaughter.

Therefore, slaughter with pre-stunning is generally recommended to *minimise* animal suffering and improve the quality of the final product.

Carrying out humane slaughter of fish comes with several benefits for the fish, the farmer, and the consumers. These are elucidated below:

- Humane slaughter methods improve meat quality and reduce the risk of spoilage (Fish Count, 2019). It reduces the appearance of soft flesh, gaping, bruising and scale loss, and improves shelf-life when compared to the traditional less humane slaughter methods (Holmyard, 2017). For example, fish slaughtered with more humane methods will often have firmer, translucent fillets with brighter colour, and the onset and severity of rigor is delayed when compared to the conventional less humane slaughter methods (Humane Slaughter Association, 2019).
- Reducing stress at slaughter through humane slaughter methods is also likely to improve eating quality and taste for the consumer (Fish Count, 2019).
- Implementing humane slaughter processes increases the ethical value of the fish product, which can potentially add economic value. Ethical consumers are usually willing to pay extra for more humanely produced and slaughtered fish (Fish Count, 2019).
- Practicing humane methods of slaughter improves compliance with existing local and global food processing and safety standards which invariably improve the market value of the product.

Pre-slaughter Welfare Considerations

Ensuring fish welfare prior to slaughter is essential to *minimise* suffering and ensure optimum quality of the final product. Key considerations include:

1. Pre-slaughter fasting

Before slaughter, it is recommended to fast fish for a period of time to empty their digestive system. This practice reduces the risk of contamination of the flesh during gutting and reduces stress related to handling. However, the duration of the fast must be adapted to avoid deterioration of the quality of the fish. For example, one study suggests that a 24-hour fasting period is beneficial in terms of product quality compared to longer periods (https://www.agrociwf.fr/).

2. Handling and transport

Handling and transport operations can be a source of significant stress for fish. It is therefore crucial to limit handling and ensure that fish are loaded and unloaded without exposure to air, while maintaining high oxygen levels in the water and appropriate stocking density (EFSA, 2017).

3. Stunning Methods

Stunning before slaughter is essential to avoid unnecessary pain to the fish. Stunning methods must cause immediate and irreversible loss of consciousness. If this is not the case, the fish must be slaughtered before they regain consciousness (Escudero, 2018).

4. Slaughter Methods

After stunning, slaughter must be carried out quickly and efficiently to avoid prolonged suffering. Methods such as *ikejime*, a traditional Japanese technique, involve puncturing the fish's brain, which minimises stress and preserves the quality of the flesh (lemonde.fr).

5. Staff training

It is essential that staff involved in fish slaughter are trained in good handling and slaughter practices to ensure animal welfare and the quality of the final product.

By implementing these measures, it is possible to significantly reduce the stress and suffering of fish before slaughter, while ensuring a better quality of products intended for consumption.

Common Fish Slaughter Methods

Fish slaughter is a crucial step in aquaculture and fisheries, influencing both animal welfare and the quality of the final product. The methods used vary in terms of efficiency and respect for animal welfare. Here is an overview of the main techniques used:

1. Open-air asphyxiation

This traditional method involves removing fish from the water and allowing them to die by asphyxiation. It is commonly used in many fish farms. However, this practice can cause prolonged suffering, as fish can take more than an hour to die while struggling to breathe (https://www.agrociwf.fr/).

2. Ice bath immersion

Fish are placed alive in a mixture of water and ice, causing progressive hypothermia until death. Although this method is commonly used, it is criticized for the stress and pain it can cause the fish before they lose consciousness (https://welfarm.fr/).

3. Electrical stunning

This technique exposes fish to an electric current of sufficient intensity and frequency to cause immediate loss of consciousness. It is considered more humane and reduces animal suffering while improving the quality of the final product (https://www.publications.gov.on.ca/)

4. Mechanical Percussion

The use of a captive bolt percussion gun, with or without penetration of the rod, causes a massive and instantaneous interruption of brain function, rendering the animal unconscious. This method is effective in ensuring rapid loss of consciousness (https://inspection.canada.ca/).

5. Ikejime Method

Originating in Japan, *ikejime* is a traditional technique that involves puncturing the fish's brain, followed by destruction of the spinal cord, in order to minimize stress and preserve the quality of the flesh. This method is increasingly being adopted outside Japan for its benefits in terms of animal welfare and product quality (Poli et al., 2005).

It is important to note that certain methods, such as the use of carbon dioxide (CO₂) for tourism, are advised as they are suitable for fish and do not respond to the norms of the World Health Organization (WOAH).

Overview of Slaughter Process in Tunisia

1. Regulatory framework and welfare standards

In Tunisia, animal welfare regulations in aquaculture are still under development, but some international guidelines, such as those of the World Organization for Animal Health (WOAH), influence local practices.

- Slaughter mainly follows health standards to ensure the quality of the final product intended for local consumption and export.
- Veterinary controls ensure compliance with hygiene and food safety conditions.

2. Slaughter methods used

Practices vary depending on the size of the farms and the equipment available:

Table 8 Slaughter methods

Method	Advantages	Disadvantages
Traditional slaughtering	Ease of execution and low	Slow method, stressful for
Used in small farms and local markets:	cost.	the animal and affects
Asphyxiation in air or on ice: Fish are		the quality of the flesh.
placed on ice or left in the open air until		
movement stops.		
Immediate decapitation: Faster		
method but rarely practised due to the		
difficulty of handling.		

Modern methods of slaughtering		
In large fish farms and export units,		
techniques that are more respectful of		
animal welfare and product quality are		
being adopted:		
Electrical stunning: A rapid method	Stress reduction,	Requires specific
that causes immediate loss of	preservation of flesh	equipment.
consciousness before slaughter.	texture and colour.	
Slaughter by immersion in ice water		
(Most common method): Fish are placed in a mixture of water and ice, causing a gradual loss of consciousness before the cessation of vital functions. Ikejime method (practised to a limited)	Common practice in Tunisia, economically viable and acceptable for exports. Excellent fish quality,	Prolonged time of loss of consciousness, which can cause stress. Little known in Tunisia and
,	, , , ,	requires specific know-
extent): Japanese technique of immediately perforating the brain for rapid death and better preservation of the flesh.	optimal preservation of taste and texture.	how.

3. Challenges and perspectives

- Lack of strict regulation: The lack of clear national guidelines on animal welfare in aquaculture can limit the application of best practices.
- Modernization of infrastructure: Large farms are looking to invest in more efficient slaughtering equipment to meet the demands of international markets.
- Raising awareness among producers: Better training of aquaculture farmers on animal welfare-friendly techniques could improve current practices.

Fish slaughtering in Tunisia still relies mainly on traditional methods, although large companies are gradually adopting more advanced techniques to meet international standards. Improving infrastructure and adopting new technologies could in the future strengthen humane slaughter practices and optimize the quality of products from the Tunisian aquaculture sector.

Question & Answer Session

- What are the most commonly used slaughter methods in Tunisia for the main farmed species, such as sea bream and sea bass?
- To what extent do international guidelines, such as those of the World Organization for Animal Health (OIE), influence Tunisian fish slaughter practices?
- How do slaughter practices influence local and international consumers' perceptions of the sustainability and quality of Tunisian aquaculture products?

MODULE 9 – ENVIRONMENTAL ENRICHMENT AND FISH WELFARE

What is Environmental Enrichment?

Environmental Enrichment (EE) involves enhancing an animal's living environment to promote species-specific behaviours, mental stimulation, and overall well-being. In the context of fish, it refers to creating conditions that mimic their natural habitats and encourage natural behaviours. It can include adding structures or modifying rearing units to create a more natural or complex environment that resembles the fish's natural habitat. It may also include any intentional augmentation of complexity to the surroundings of the animal, such as buildings made of plants and pebbles, music, unusual foods, and the introduction of various fish species. Furthermore, it may include mimicking colours and introducing varied conditions like dark hiding spots and cooler water areas for them to choose from (Leone and Estévez, 2008; Näslund & Johnsson, 2014). This is particularly relevant in captive settings such as aquaculture farms and public aquariums (Zhang et al., 2020).

Environmental enrichment in aquaculture aims to improve fish welfare by recreating elements of their natural habitat, thereby promoting the expression of innate behaviours and reducing stress. This approach, widely studied for terrestrial animals, is increasingly being applied to aquatic species.

The challenge is figuring out the kind and quantity of environmental enrichment that fish prefer, and this can be aided by knowledge of their sensory abilities. To get started, we must ensure that each potentially enriching material is pertinent to the biology and preferences of the species. For instance, some fish may prefer hiding, while others may prefer swimming against the flow of the water (Zhang et al., 2020).

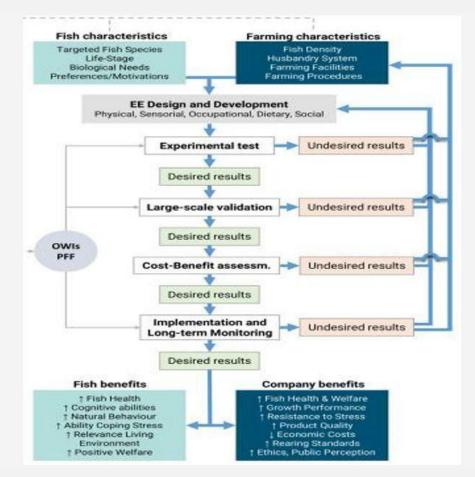


Figure 18 Schematic for the decision-making process in Environmental Enrichment; OWIs: Operational Welfare Indicators; PFF: Precision Fish Farming (Source: Arechavala-Lopez et al., 2021)

Types of Environmental Enrichment

- Physical Enrichment: Introducing structures such as hiding places, varied substrates, or floating objects to stimulate exploration and provide refuge.
- Sensory Enrichment: Using visual, auditory, or olfactory stimuli to engage fish senses and encourage natural behaviors.
- Dietary Enrichment: Diversifying food sources or feeding methods to stimulate foraging and physical activity.

4. **Social Enrichment**: Maintaining species-appropriate social groups to promote positive interactions and reduce aggression.

Benefits of Environmental Enrichment

Environmental enrichment in aquaculture has several benefits for fish welfare:

- Reduced Stress and Aggression: An enriched environment provides varied stimulation that reduces stress and aggressive behavior in fish (https://www.agrociwf.fr/).
- Improved physical and mental health: Appropriate enrichments allow fish to express natural behaviors, contributing to their overall well-being (https://www.agrociwf.fr/).
- Increased resilience and adaptability: Stimulating environments promote the development of adaptive capacities in fish, making them more resilient to environmental changes or stresses (https://chairebea.vetagro-sup.fr/).
- Improved Water Quality: An enriched environment can contribute to improved water quality, which is essential for fish health (https://www.agrociwf.fr/).

By incorporating appropriate enrichments, aquaculture producers can improve fish welfare, which can also lead to increased productivity and reduced health problems within the flock.

Specie Recommendations for Environmental Enrichment

The response of fishes to environmental enrichment is diverse and can be positive (improved cognitive performance and behaviour, reduced stress levels, improved physical condition (Arechavala-Lopez et al., 2020; Batzina & Karakatsouli, 2012; Bosakowski & Wagner, 1995; Soares et al., 2011)) or negative (increase in aggression, increased stress (Barreto et al., 2011; Sabri et al., 2012; Woodward et al., 2019)). Responses can vary between species, between types of enrichment, between life stages and between group sizes. Therefore, it is

crucial to monitor behavioural, physical, and physiological indicators of welfare when establishing a new environmental enrichment protocol.

Gilthead sea bream

Gilthead sea bream (*Sparus aurata*) commonly swim between the surface and 30 m depth. They interact with the substrate to rest and hunt for food (Abecasis & Erzini, 2008; Jobling & Peruzzi, 2010), therefore the addition of substrate could provide welfare benefits to sea bream in aquaculture.

Structural enrichment

Gilthead sea bream (juveniles, 20.3 ± 0.22 g) reared for 75 days with blue substrate (glass gravel 6-12 mm in size) displayed less aggression behaviour and had lower basal cortisol levels than sea bream reared without substrate (Batzina, Kalogiannis, et al., 2014). Blue or red-brown gravel has been found to lowered aggression; however, this was not observed in fish exposed to green gravel (68.3) ± 0.50 g exposed for 84 days, glass gravel 6-12 mm in size) (Batzina & Karakatsouli, 2012). In a substrate-colour preference test (glass gravel 6-12 mm in size), 2-yearold gilthead seabream (84.8 ± 1.9 g) preferred blue substrate over red-brown, green, or no substrate, but juvenile sea bream $(21.9 \pm 0.5 \text{ g})$ showed a preference of red-brown over green substrate but did not show a preference when offered the choice between blue vs. green or blue vs. red-brown substrate (Batzina, Sotirakoglou, et al., 2014). Substrate can benefit the welfare of sea bream but the reason why a difference in colour preference was observed between the two age groups is unclear and further research is needed to ensure optimal enrichment can be provided to gilthead sea bream at each life stage. When comparing the effect of exposing juvenile sea bream (20.2 \pm 0.26 g) to blue substrate (glass gravel 6-12 mm in size, structural enrichment) vs. a photo of blue substrate (sensorial enrichment simulating structural enrichment) for 74 days, the fish exposed to substrate were less aggressive and were observed manipulating the substrate (Batzina & Karakatsouli, 2014). These studies show the importance of substrate and substrate colour on the welfare of gilthead sea bream. The observations made by Batzina and Karakatsouli (2014, 2012) and Batzina et al., (2014b) that sea bream manipulated the substrate is important. Gilthead sea bream interacts in the wild with the substrate either to explore their environment (e.g. foraging) or as predator protection (Abecasis & Erzini, 2008; Jobling & Peruzzi, 2010) therefore providing captive gilthead sea bream with manipulable substrate could allow them to perform ethologically important behaviours. All the studies reviewed on the benefits of gravel substrate for the welfare of sea bream were carried out at a laboratory scale in small tanks. Research is needed that determines the effect of gravel on the welfare of gilthead sea bream in large aquaculture systems.

Sensory enrichment

In a study researching sensory enrichment similar to that discussed above in rainbow trout, Papoutsoglou et al., (2008) exposed juveniles gilthead sea bream $(1.51 \pm 0.01 \text{ g})$ to Mozart for 2 or 4h per day using a hydrophone in either a high or low lighting environment for 117 days. Fish exposed to Mozart for 4 h per day with high lighting had lower levels of brain neurotransmitters, indicating reduced stress. Music has the potential to reduce stress for gilthead sea bream reared on land in hatcheries, ponds, or raceways but further research is needed. It is important to note that the points raised by the authors in the rainbow trout study about the possible effect of environmental and life- stage variability of on the benefits of musical enrichment must also be considered in gilthead sea bream and all other fish species exposed to this type of enrichment (Papoutsoglou et al., 2013).

European sea bass

Enriched environments did not affect the growth performance of seabass at group level. Different studies indicate that the effects on growth can be positive, negative or no effects. In agreement with this study, Arechavala-Lopez et al., (2019) found that the vertical enrichment did not have an effect on the growth

of juvenile gilthead seabream. Similarly, in other aquaculture species reared under enrichment conditions, the growth was no different than the control (Brockmark et al., 2010; Roberts et al., 2011; Ren et al., 2019). However, positive effects of enriched environments have been also reported. For instance, the addition of a colour substrate on reared seabream enhanced the growth performance, even reduced the aggressiveness (Batzina & Karakatsouli, 2012, 2014; Batzina et al., 2014a,b,c,d).

Rearing techniques for European sea bass are often similar to those of gilthead sea bream however research is needed to determine what species-specific environmental enrichment is best to improve the welfare of European sea bass in aquaculture.

Tilapia fish

Environmental enrichment strategies for Tilapia fish species have been studied to improve their behaviour and welfare in captivity. Studies have shown that structural environmental enrichment such as the use of plant-fibre ropes or physical structures can enhance cognition, exploratory behaviour, and brain physiological functions in Tilapia fish (Torrezani et al., 2013). Enriched environments have shown the reduction of aggression and increased hierarchical behaviour in Tilapia fish (Arechavala-Lopez et al., 2020). As adapted from the Aquatic Life Institute (ALI), key recommendations for environmental enrichment of Tilapia fish have been elucidated in Table 9 below.

Table 9 Environmental enrichment recommendation for tilapia fish species

Nile tilapia (Oreochromis niloticus)								
Enrichment	Juvenile	Adult						
Category								
	Not enough information is	Maia & Volpato (2016) showed that it						
Enclosure	available at this time.	takes at least 10 days of testing to find						
Coloration	Therefore, we default to the	the colour preference for Nile tilapia,						
	species' "natural" conditions	and that green and blue are the most						
	at this stage.	preferred colours by the species.						

Substrate Provision	Enrichment with e.g. river pebbles and plastic kelp models probably increases the value for juveniles, but this may cause more intense fights to establish territories (FishEthoBase). Must be closely monitored.	Males choose to make their nests in sand substrate when compared to other substrates such as stones. Individuals presented equal frequency of total attacks whether they were being kept with or without substrates, but fewer highly intense attacks were observed in animals kept with the substrate. For the most natural solution, provide sand and mud; alternatively, provide gravel. Bamboo poles also increase growth (FishEthoBase).
Lighting	Increased light intensity (280-1390 lx) reduces aggressive interactions between pairs of juvenile males. Natural photoperiod is 9-15 hours. Provide access to natural (or at least simulated) photoperiod and daylight. (FishEthoBase)	Blue light reduces stress by preventing the confinement-induced cortisol response (Volpato & Barreto, 2001) Natural photoperiod is 9-15 hours. Provide access to natural (or at least simulated) photoperiod and daylight. Avoid 1,400 lux, as it increases aggression compared to 280 lux. (FishEthoBase)
Water Augmentation	Depth: Provide at least 2-6 m, ideally up to 20 m, bearing in mind the planned stocking density. Individuals should be able to choose swimming depths according to life stage and status. (FishEthoBase)	Depth: Provide at least 2-6 m, ideally up to 20 m, bearing in mind the planned stocking density. Individuals should be able to choose swimming depths according to life stage and status. (FishEthoBase)
Structures	An enriched environment increases resource value which in turn prompts more intense fights (FishEthoBase)	Fish cultured in environments enriched with artificial water hyacinth and shelter presented higher latency to trigger confrontations, and the confrontations were less intense in the section with enrichment items (Neto & Giaquinto, 2020).
Shelter	An enriched environment increases resource value which in turn prompts more intense fights (FishEthoBase)	For the most natural solution, provide roots or submerged branches, bushes, or trees; alternatively, provide artificial shelters inside the system (e.g. artificial reef) (FishEthoBase)
Feeding System	Make sure to provide sufficient feed from ca 4-8 days after hatching. Self-feeders could prevent stressful	Tryptophan-supplemented food was found to reduce confrontations (Neto & Giaquinto, 2020) Install a self-feeder and make sure all Nile tilapia adapt to it.

food	competition	(FishEthoBase) Provide sand and mud
(FishEthoBase)		and bamboo poles so that individuals
		may search for food. (FishEthoBase)

In conclusion, environmental enrichment is a powerful tool for enhancing fish welfare by providing opportunities for species-specific behaviors, mental stimulation, and improved overall health. Recognizing the importance of environmental enrichment in captive settings can contribute to the ethical treatment of fish and the sustainability of aquaculture practices. Regular research and collaboration between scientists, aquaculturists, and conservationists will continue to advance our understanding of effective enrichment strategies.

Question & Answer Session

- What are the potential impacts of environmental enrichment on water quality in aquaculture systems?
- How can environmental enrichment contribute to the sustainability of aquaculture practices?
- Are there differences in environmental enrichment needs between farmed fish species?
- How does environmental enrichment influence the health and growth of farmed fish?
- What are the main objectives of environmental enrichment in aquaculture?

MODULE 10 – FISH HEALTH AND WELFARE

Animal Health and Welfare

Animal welfare is defined as a state of the animal, the treatment it receives from animal care, animal husbandry, humane treatment, and how an animal is coping with the conditions in which they live (Animal Welfare Institute, 2018). Animal Health can be defined as the absence of disease and the normal functioning of an organism and normal behavior (Ducrot et al., 2011). From the above definitions, it is evident that the concepts of animal 'health' and 'welfare' are different but very much linked to each other. For example, an animal in a good state of welfare is considered healthy, comfortable, well nourished, safe, able to express innate behavior, and is not suffering from unpleasant states such as pain, fear, and distress.

The main difference is that animal health largely focuses on the occurrence, impact and treatment of diseases, infections and sub-optimal health conditions, while welfare incorporates the sentience and mental complexity of animals which includes their ability to feel emotions, have needs, be conscious and their ability to adapt to domestication without negatively impacting their freedom of expression of natural behaviors (Nicks and Vadenheede, 2014). Though varying in approach to well-being, they mutually impact each other and are both integral to the overall optimal well-being and livelihood of animals. Good animal welfare especially for farmed animals encompasses disease prevention, appropriate shelter, management, nutrition, humane handling and humane slaughter (Animal Welfare Institute, 2018). Therefore, the idea of welfare remains an important element in addition to traditional animal health concerns (Nicks and Vadenheede, 2014).

Biosecurity for Fish Health and Welfare

Biosecurity is a set of measures to prevent the introduction, spread and impact of infectious diseases in aquaculture production systems (FAO, 2020). It is essential to ensure fish health and welfare, optimize productivity and reduce economic losses from disease outbreaks (WOAH, 2021).

According to Yanong and Erlacher-Reid (2012), the major goals of biosecurity are:

- Effective animal management through acquiring healthy fish stocks and optimizing their health and immunity through good husbandry.
- Management of pathogens by preventing, reducing, or eliminating pathogens
- Management of people by educating, training, and managing movement of staff and visitors

Farmed fish are exposed to a variety of pathogens, including:

- Viruses (e.g. infectious haematopoietic necrosis virus, nodavirus) (FAO, 2020).
- Bacteria (e.g. Aeromonas hydrophila, Vibrio spp., Flavobacterium columnare) (Subasinghe et al., 2019).
- Parasites (e.g. Ichthyophthirius multifiliis, Gyrodactylus spp.) (WOAH, 2021).
- Fungi (e.g. Saprolegnia spp.) (FAO, 2020).

The absence of strict control can lead to epidemic outbreaks, impacting production and threatening the biodiversity of natural environments (WOAH, 2021).

Benefits of Biosecurity on Fish Farms

Implementing biosecurity measures in fish farms has several major benefits, both for fish health and for the economic and environmental sustainability of aquaculture operations.

1. Disease prevention and economic loss reduction

Reducing disease outbreaks by preventing the introduction and spread of pathogens (FAO, 2020).

Reducing production losses caused by viral, bacterial and parasitic infections (WOAH, 2021).

Reducing costs related to veterinary treatments and antibiotics (Subasinghe et al., 2019).

2. Improved fish health and welfare

Maintaining optimal stocking density to reduce stress and aggressive behaviour (FAO, 2020).

Improved water quality, ensuring a favourable environment for fish growth and development (WOAH, 2021).

Reduced medical interventions, avoiding the accumulation of drug residues in fish and the environment (Subasinghe et al., 2019).

3. Increased productivity and profitability

Improved fish survival rates, leading to more stable and predictable production (FAO, 2020).

Optimization of resources (water, feed, treatments) through rigorous control of farming conditions (WOAH, 2021).

Access to better markets and certification for fish products from systems that meet health standards (Subasinghe et al., 2019).

4. Reducing environmental impact

Less discharge of chemical and biological contaminants into aquatic ecosystems (FAO, 2020).

Limiting the transmission of diseases to wild fish populations (WOAH, 2021).

Promoting sustainable practices, reducing reliance on antibiotics and other chemicals (Subasinghe et al., 2019).

5. Compliance with regulations and access to international markets

Compliance with international health standards (e.g. WOAH, FAO) facilitating the export of products (WOAH, 2021).

Improved traceability and quality guarantees for consumers and investors (FAO, 2020).

Strengthening the reputation of fish farms, promoting their competitiveness in the global market (Subasinghe et al., 2019).

Common Biosecurity Measures and Practices

The application of biosecurity in fish farming is based on a set of preventive measures aimed at reducing health risks, improving productivity and minimising environmental impact.

Bera et al., (2018) and Ernst et al., (2017) share a comprehensive list of good biosecurity measures and practices to be adopted by fish farmers. These include the following:

- ❖ Providing clean pathogen-free water source at all times for land-based fish farms.
- Restricting movement of fish from other farms or one farm to the other, especially from those of poorer health.
- ❖ Limiting visits to the fish farm or access to a farm site i.e., by setting up gates and fences.
- * Fixing clear signs to direct traffic within and outside the farm where necessary.
- ❖ Establishing and implementing strict sanitary measures such as defining sanitary units, cleaning and disinfection for people entering the farm, using protective and disinfected clothing, foot dips and hand hygiene.
- Restricting movement of tools and culture organisms.
- ❖ Fish stock health should be maintained by keeping stock stress to minimum level and maintaining optimum water quality.

- ❖ Minimise the pest and disease risk associated with stock movements onto, within and off your farm by maintaining appropriate quarantine procedure during stock movement.
- ❖ Minimise the risks of pests and disease entry associated with incoming water through proper treatment.
- ❖ Preventing the entry and spread of pest and disease by assessing all equipment, vessels and vehicles entering the farm through proper biosecurity procedures like disinfection of equipment, controlled use etc.
- Records should be kept of the workers and visitors, and all the workers should be trained on biosecurity standards.
- * Food-borne disease organisms can be *minimized* by proper handling and storage.
- ♦ Implementing pest control management by controlling or eradicating predators, wildlife, scavengers, and other organisms from farm areas.
- Wastewater and solid waste should be treated appropriately before disposal.
- ❖ Maintain record for all aspects of biosecurity plan (staff training, workers and visitor's log, inspection, and maintenance of farm infrastructure).
- Regular monitoring, surveillance and audit of the biosecurity measures should be implemented throughout the farm.
- ❖ Development and implementation of an appropriate biosecurity management plan (Bera et al., 2018; Ernst et al., 2017).

Fish Diseases and Impacts

Disease outbreaks are a key menace in aquaculture, capable of causing huge economic losses to the farms from increased mortality, decreased growth and productivity, and higher production costs. Due to its catastrophic impacts on aquaculture, FAO (2020) regarded it as one of the major obstacles to the growth and development of sustainable aquaculture. The major barriers to effective prevention and control of diseases in fish farms include poor aquaculture disease

management training, inadequate effective drugs within the reach of the farmers, high cost of quality feeds, high cost of drugs and treatment, and poor financial support. These indicate the need for fish farmers and managers to be well trained in aquaculture disease management, reduce the occurrence of disease outbreaks, and increase their farms' economic performance.

Numerous infectious diseases are significant to global aquaculture, and they are often caused by viruses, bacteria, parasites, fungi, or pests (Cascarano *et al.*, 2021). They have the capacity to spread through the movement of infected host species, have devastating effects on aquaculture productivity, and pose greater challenges for aquaculture development (Subasinghe *et al.*, 2009).

Fish diseases undermine sustainable development goals, especially in developing nations, by lowering income earnings, causing job losses, endangering food availability, and posing a threat to nutrition and food security (World Bank, 2014). Because aquaculture in developing nations is typically small-scale and rural, the vast majority of infections go undetected, untreated, and unregistered, placing a heavy burden on populations trying to overcome poverty (Mukaila et al., 2023).

Diseases of fish and other animals may be from infectious organisms such as bacteria, virus, fungi, parasites, and protozoa, or may be from miscellaneous non-Infectious origins.

Table 10 Common bacterial diseases of farmed fish

Disease	Pathogen	Affected	Symptoms	Transmissio	Treatment	Reference
		Species		n	&	
					Prevention	
Vibrioses	Vibrio	Salmon,	Septicemia,	Contaminat	Antibiotics,	Toranzo et
	anguillarum,	trout,	skin ulcers,	ed water,	vaccinatio	al., 2005
	Vibrio	sea	exophthalm	contact	n,	

	vulnificus,	bass,	os (bulging	with	improved	
	Vibrio	sea	eyes),	infected	farming	
	salmonicida	bream	haemorrhag	fish.	conditions.	
			es.			
Furunculosis	Aeromonas	Salmon,	Boils	Direct	Vaccinatio	Austin et
	salmonicida	trout,	(abscesses	contact	n,	al., 2016
		catfish	under the	with sick fish	antibiotics,	
			skin),	or	stress	
			lethargy,	contaminat	reduction	
			internal	ed water.		
			bleeding.			
Flavobacteriosi	Flavobacteri	Freshwat	Fin rot,	Contaminat	Pond	Declercq
s (Columnaria	um	er fish	yellowish	ed water,	disinfectio	et al., 2013
or Bacterial Fin	columnare	(tilapia,	lesions on	stress, skin	n,	
Rot)		carp,	the skin and	injuries.	antibiotics,	
		trout,	gills,		water	
		catfish)	breathing		quality	
			difficulties.		improvem	
					ent	
Bacterial	Aeromonas	Tilapia,	Skin	Contaminat	Antibiotics,	Roberts,
Hemorrhagic	hydrophila	Carp,	hemorrhage	ed water,	vaccinatio	2012
Septicemia		Catfish,	S,	injuries,	n, water	
(BHS)		Trout	exophthalm	stress.	quality	
			os, anemia,		monitoring	
			ascites			
			(abdominal			
			swelling).			
Pseudotubercul	Photobacteri	Sea	Formation of	Contaminat	Antibiotics,	Magarinos
osis	um	Bass,	white	ed water,	strict	et al., 1996
(Pasteurellosis	damselae	Sea	nodules in	contact	biosecurity	
of Fish)	subsp.	Bream,	internal	with	,	
	piscicida	Trout	organs,	infected	vaccinatio	
			weight loss,	fish.	n	
			high			
			mortality.			

Wanada ta ata	V	Deiala	K'-l	0 1 1	\	D
Yersiniosis	Yersinia	Rainbow	Kidney	Contaminat	Vaccinatio	Barnes,
(Bacterial	ruckeri	trout,	necrosis,	ed water,	n,	2011
Kidney Disease		salmon	cutaneous	contact	antibiotics,	
of Salmonids)			and internal	with	stress	
			haemorrhag	infected	reduction	
			es,	faeces		
			exophthalm			
			os.			

Table 11 Common fungal diseases of farmed fish

Disease	Pathogen	Affecte	Symptoms	Transmissio	Treatment &	Referenc
		d		n	Prevention	е
		Species				
Saprolegnia	Saprolegnia	Salmoni	White,	stress,	Improve	Van Den
(Freshwater	spp. (mainly	ds	cottony	injuries, poor	water quality	Berg et
Fungus)	Saprolegnia	(trout,	patches on	water	Treatment	al., 2013
	parasitica)	salmon),	the skin, fins,	quality, low	with salt,	
		carp,	and gills.	temperatur	methylene	
		tilapia,	Ulcers and	es (<15°C).	blue, or	
		catfish	tissue		hydrogen	
			necrosis		peroxide.	
			Lethargical		Stress	
			behaviour,		managemen	
			loss of		t and injury	
			appetite.		reduction.	
Branchiomyc	Branchiomy	Carp,	Necrotic	High	Improve	Czeczug
osis (Fungal	ces	tilapia,	lesions on	temperatur	water	a &
Gill Disease)	sanguinis,	catfish,	the gills.	es, high	oxygenation	

	Branchiomy	sturgeo	Rapid and	organic	Clean and	Muszynsk
	ces	n	laboured	load in the	disinfect	a, 1999
	demigrans		breathing.	water,	ponds.	
			Sudden	stress.	Use of	
			mortality		antifungal	
			without		treatments	
			obvious		such as	
			external		potassium	
			signs.		permangana	
					te.	
Ichthyophono	Ichthyophon	Trout,	Whitish	Introduction	Lack of	Kocan et
sis (Fungal	us hoferi	salmon,	nodules on	of infected	effective	al., 2004
Granuloma		herring,	the liver,	fish, chronic	treatment	
Disease)		cod	kidneys,	stress	Avoid the	
			spleen, and		introduction	
			muscles.		of carrier fish.	
			Weight loss,		Strict	
			lethargy,		monitoring of	
			abnormal		farms.	
			movements			
			Deformity			
			of the spine			
			in			
			advanced			
			cases.			
Fish Fusarium	Fusarium	Tilapia,	Deep	Poor	Antifungal	Alves et
Disease	spp.	Trout,	ulcerative	hygiene,	treatments.	al., 2002
		Catfish	lesions on	injuries,	Rigorous	
			the skin.	environmen	pond	
			Discolourati	tal stress	cleaning.	
			on of fins		Monitoring of	
			and scales.		water	
			Systemic		parameters.	
			infections			

	leading to		
	mortality.		

Table 12 Common Parasitic Diseases of Fishes

Disease	Pathogen	Affected	Symptoms	Transmissio	Treatment &	Reference
		Species		n	Prevention	
Ichthyophthiri	Ichthyophthi	Tilapia,	Small	Contaminat	Raising water	Buchman
osis (White	rius multifiliis	trout,	white	ed water,	temperature	n &
Spot Disease)	(freshwater	carp,	spots on	infected fish	(>26°C) to	Bresciani,
	fish) /	catfish,	the skin,		disrupt the	2006
	Cryptocaryo	sea	fins, and		parasite's	
	n irritans	bream,	gills.		(Ichthyophthiriu	
	(marine fish)	sea bass	Rubbing		s) life cycle.	
			against		Treatments with	
			the pool		salt, methylene	
			walls.		blue, or	
			Accelerat		formalin.	
			ed		Controlling fish	
			breathing		density and	
			and loss		improving	
			of		water quality.	
			appetite.			
Trichodinosis	Trichodina	Carp,	Skin and	Contaminat	Salt or formalin	Lom &
	spp.	Tilapia,	gill	ed water,	bath.	Dykovà,
		Catfish,	irritation.	infected fish	Improve water	1992
		Trout	Excessive		filtration and	
			mucus		oxygenation	
			secretion.		Control	
			Abnormal		stocking	
			swimming		densities.	
			and			
			lethargy.			
Costiosis (Veil	Ichthyobod	Trout,	Cloudy	Contaminat	Salt or formalin	Woo, 2006
Disease)	o necator	Tilapia,	skin	ed water,	bath	

		Catfish,	covered	infected	Improve	
		Carp	with a	fish.	husbandry	
			mucous		conditions.	
			veil.		Quarantine of	
			Loss of		new fish.	
			appetite			
			and			
			erratic			
			swimming.			
			Difficulty			
			breathing			
			and			
			inflamed			
			gills.			
Gyrodactylosi	Gyrodactylu	Trout,	Rubbing	Direct	Antiparasitic	Bakke et
s and	s spp. (skin) /	Carp,	against	contact	bath (formalin,	al., 2007
Dactylogyrosi	Dactylogyru	Tilapia,	the walls.	between	salt,	
s	s spp. (gills)	Catfish	Rapid	fish,	praziquantel)	
(Monogenous			breathing	contaminat	Cleaning and	
Gill and Skin			and pale	ed water.	disinfection of	
Worms)			gills.		ponds	
			Weight		Reducing fish	
			loss and		stress	
			high			
			mortality			
			in severe			
			cases.			
Lernaea	Lernaea	Carp,	Parasitics	Contaminat	Manual	Lester &
(Anchorworm	spp.	Tilapia,	visible as	ed water,	removal of	Hayward,
Disease)	(parasitic	Catfish	filaments	infected fish	parasites.	2006
	copepods)		attached		Treatments with	
			to the		diflubenzuron	
			body		or	
			Ulcers and		organophosph	
			secondar		ates	

			У		Pond		
			infections.		disinfection		
			Weight		and control of		
			loss and		parasitic		
			high		crustaceans.		
			mortality				
			in severe				
			infestation				
			s.				
Myxosporidio	Myxobolus	Salmoni	White	Infectious	No effective	Lom	&
sis	spp.,	ds,	cysts in	spores in the	treatment.	Dykovà,	
	Henneguya	Carp,	the	water,	Improvement	1992	
	spp.	Tilapia	muscles,	intermediat	of hygiene and		
			gills, or	e hosts	husbandry		
			internal	(tubifex	conditions.		
			organs.	worms).	Reduction of		
			Body		exposure to		
			deformity		intermediate		
			and		hosts.		
			abnormal				
			swimming.				
			Weight				
			loss and				
			reduced				
			growth.				

Table 13 Common Protozoan Diseases

Disease	Pathogen	Affected	Symptom	Transmission	Treatment &	Referenc
		Species	s		Prevention	е
Ichthyophthiri	Ichthyophthir	Trout,	Small	Contaminat	Increase	Buchma
osis (White	ius multifiliis	carp,	white	ed water,	water	nn &
Spot Disease)	(freshwater) /	tilapia,	spots on	direct	temperature	Bresciani,
	Cryptocaryo	catfish,	the skin,		(>26°C) to	2006

	n irritans	sea	fins, and	contact with	accelerate	
	(marine	bream,	gills.	infected fish.	the parasite's	
	water)	sea bass.	Rubbing		life cycle.	
			against		Treatments	
			pond		with salt,	
			walls.		methylene	
			Rapid		blue, or	
			breathin		formalin.	
			g and		Monitoring	
			loss of		and	
			appetite.		reduction of	
					fish density.	
Costiosis (Veil	Ichthyobodo	Trout,	Cloudy	Contaminat	Salt or	Woo,
Disease)	necator	Tilapia,	skin with	ed water,	formalin	2006
		Carp,	excess	contact with	bath.	
		Catfish	mucus.	infected fish.	Improve	
			Lethargy		water and	
			and loss		filtration	
			of		conditions.	
			appetite.		Quarantine	
			Inflamed		new fish.	
			gills and			
			difficulty			
			breathin			
			g.			
Trichodinosis	Trichodina	Carp,	Rubbing	Contaminat	Salt, formalin,	Lom &
	spp.	tilapia,	against	ed water,	or potassium	Dykovà,
		catfish,	pond	contact with	permangan	1992
		trout	walls.	infected fish.	ate bath.	
			Excessive		Improve	
			mucus		water	
			secretion		oxygenation	
					and filtration.	
			Abnorma			
			1			

			swimmin		Reduce	
			g and		stocking	
			breathin		densities.	
			g			
			difficultie			
			s.			
Chilodonellosi	Chilodonella	Carp,	Bluish or	Contaminat	Salt or	Basson &
s	spp.	tilapia,	grayish	ed water,	formalin	Van As,
		trout,	skin	contact with	treatments	2006
		catfish	covered	infected fish.	Improve	
			with		hygiene	
			excess		conditions	
			mucus.		and water	
			Rapid		quality.	
			breathin		Monitor fish	
			g and		when	
			difficulty		introducing	
			breathin		new	
			g.		individuals.	
			Lethargy			
			and			
			disorient			
			ed			
			swimmin			
			g.			
Hexamitosis	Hexamita	Tilapia,	Weight	Contaminat	Metrodinazol	Poynton
(Infection by	spp.,	trout,	loss and	ed water,	е	&
Hexamita and	Spironucleus	salmon,	loss of	contact with	(antiparasitic	Morrison,
Spironucleus)	spp.	ornament	appetite.	infected) in feed.	1990
		al fish	Whitish,	feces.	Improve	
		(discus)	gelatino		water and	
			US		feed	
			dropping		conditions.	
			S.		Quarantine	
					suspect fish.	

Iesions and high mortality in cases of severe infection.				Intestinal			
Myxosporidios is (Infections) Myxobolus spp., Butter of the controlling of the co							
Myxosporidios is (Infections by Myxobolus, Henneguya, etc.) Myxosporidios is (Infections by Myxobolus, Henneguya, etc.) Myxosporidios is (Infections spp., Salmon, n of released treatment. Dykovà, Dykovà, Iliapia, white into the Improved 2006 Trout cysts on gills, intermediat reduced exposure to internal worms. Hosts. Organs. Body deformiti es and slowed growth. Increase d mortality in young							
Myxosporidios is (Infections spp., Salmon, Petc.) Myxosporidios is (Infections spp., Salmon, Petc.) Myxobolus, Henneguya spp. Trout cysts on Gills, intermediat reduced muscles, or as tubifex intermed internal controlling worm. Body deformiti es and slowed growth. Increase d mortality in young							
Myxosporidios is (Infections spp., Salmon, Tilapia, Petc.) Myxobolus, Henneguya spp. Trout cysts on gills, intermediat internal organs. Body deformiti es and slowed growth. Increase d mortality in young				-			
Myxosporidios Myxobolus Carp, Formatio Spores No effective Lom & Dykovà, is (Infections spp., Salmon, n of released treatment. Dykovà, by Myxobolus, Henneguya spp. Trout cysts on water, gills, intermediat reduced exposure to or as tubifex intermediate internal organs. Body deformiti es and slowed growth. Increase d mortality in young							
Myxosporidios is (Infections is (Infections spp., by Myxobolus, Henneguya etc.) Myxobolus, Henneguya Spp. Carp, Salmon, Illapia, Trout Formatio of released released into the limproved of spp. No effective treatment. Dykovà, Dykovà, Illapia, into the limproved of spp. Dykovà, Dykovà, Dykovà, Dykovà, Dykovà, Illapia, into the limproved of spp. Montro into the limproved of spp. Montro intermediat o							
is (Infections by Myxobolus, Henneguya spp. Salmon, Tilapia, Trout cysts on gills, intermediat reduced e hosts such or as tubifex intermediate intermal worms. Hosts. Body deformiti es and slowed growth. Increase d mortality in young							
by Myxobolus, Henneguya spp. Henneguya, etc.) Henneguya, etc.) Henneguya, spp. Trout Tro	Myxosporidios	Myxobolus	Carp,	Formatio	Spores	No effective	Lom &
Henneguya, etc.) Trout Cysts on gills, intermediat reduced e hosts such exposure to intermal organs. Body deformiti es and slowed growth. Increase d mortality in young Trout Cysts on water, filtration and reduced e hosts such exposure to intermediate e hosts. Monitoring and controlling worm populations in ponds.	is (Infections	spp.,	Salmon,	n of	released	treatment.	Dykovà,
gills, muscles, e hosts such exposure to or as tubifex intermediate hosts. Organs. Body deformiti es and slowed growth. Increase d mortality in young	by Myxobolus,	Henneguya	Tilapia,	white	into the	Improved	2006
muscles, or as tubifex intermediate internal worms. hosts. Organs. Body deformiti es and slowed growth. Increase d mortality in young	Henneguya,	spp.	Trout	cysts on	water,	filtration and	
or as tubifex intermediate hosts. organs. Body and controlling es and slowed growth. Increase d mortality in young	etc.)			gills,	intermediat	reduced	
internal worms. hosts. organs. Body deformiti es and slowed growth. Increase d mortality in young				muscles,	e hosts such	exposure to	
organs. Body deformiti es and slowed growth. Increase d mortality in young				or	as tubifex	intermediate	
Body deformiti es and slowed populations growth. Increase d mortality in young				internal	worms.	hosts.	
deformiti es and worm slowed populations growth. Increase d mortality in young				organs.		Monitoring	
es and slowed populations in ponds. Increase d mortality in young				Body		and	
slowed populations growth. in ponds. Increase d mortality in young				deformiti		controlling	
growth. in ponds. Increase d mortality in young				es and		worm	
Increase d mortality in young				slowed		populations	
d mortality in young				growth.		in ponds.	
mortality in young				Increase			
in young				d			
in young				mortality			
11311.				fish.			

Table 14 Viral diseases

Disease	Pathogen	Affected	Symptoms	Transmission	Treatment &	Referen
		Species			Prevention	се
Infectious	Infectious	Salmoni	Hemorrhage	Contaminat	No specific	Wolf,
Hematopoieti	Hematopoie	ds	s in the gills,	ed water,	treatment.	1988
	tic Necrosis	(rainbow	skin, and fins.	contact with		

c Necrosis	Virus (IHNV),	trout,	Disturbed	infected fish,	Vaccinatio	
(IHN)	family	salmon).	swimming	unsanitised	n possible	
	Rhabdovirid		and loss of	fish farming	for certain	
	ae		coordination	equipment.	species.	
					Strengthen	
			Bulging eyes		ed	
			(exophthalm		biosecurity	
			os) and		and strict	
			swollen		water	
			abdomen.		quality	
					control.	
Viral	Viral	Trout,	Skin and	Contaminat	No	WOAH,
Hemorrhagic	Hemorrhagi	salmon,	internal	ed water,	effective	2019
Septicemia	С	perch,	haemorrhag	contact with	treatment	
(VHS)	Septicemia	pikeperc	es.	infected fish,	Strict health	
	Virus (VHSV),	h, cod	Abnormal	mechanical	surveillance	
	family		swimming	vectors	and	
	Rhabdovirid		and loss of	(birds,	elimination	
	ae		balance.	equipment).	of infected	
			Swollen		fish.	
			abdomen		Vaccinatio	
			and		n in	
			exophthalmo		developme	
			S.		nt.	
Infectious	Infectious	Trout,	Loss of	Contaminat	Lack of	Roberts,
Pancreatic	Pancreatic	salmon,	appetite and	ed eggs,	effective	2012
Necrosis (IPN)	Necrosis	catfish,	slowed	contact with	treatment	
	Virus (IPNV),	tilapia	growth.	infected fish,	Strict	
	family		Swollen	contaminat	control of	
	Birnaviridae		abdomen	ed water.	broodstock	
			and spiral		and eggs.	
			swimming.		Biosecurity	
			High		and health	
			mortality in		surveillance	
			fry			

Lymphocysto	Lymphocysti	Marine	Whitish or	Direct	No specific	Chincha
sis	s Virus (LCV),	and	gray nodules	contact with	treatment.	r, 2002
	family	freshwat	on the skin	infected fish,	Isolation of	
	Iridoviridae	er fish	and fins.	contaminat	infected fish	
		(sea	Fin	ed water.	and	
		bass, sea	deformation.		improveme	
		bream,	Little impact		nt of water	
		carp,	on mortality,		quality.	
		tilapia)	but reduces		Reduction	
			the		of fish stress	
			commercial		to prevent	
			value of the		the onset of	
			fish.		the disease.	
Viral Nervous	Nodavirus,	Sea	Loss of	Contaminat	No specific	Munday
Necrosis	family	bass, sea	coordination	ed water,	treatment	et al.,
(VNN) or Viral	Nodaviridae	bream,	and erratic	vertical	Disinfection	2002
Encephalopat		turbot,	movements.	transmission	of eggs and	
hy and		cod,	Skin	(from	strict control	
Retinopathy		halibut,	discolouratio	parents to	of	
(VRE)		tilapia	n.	eggs)	broodstock.	
			Significant		Elimination	
			mortality in		of infected	
			larvae and		individuals	
			young fish.		to limit	
					spread.	
Koi	Cyprinid	Commo	Skin lesions	Direct	No	Haenen
Herpesvirus	herpesvirus 3	n Carp,	and necrotic	contact with	effective	et al.,
(KHV)	(CyHV-3)	Koi Carp	gills.	infected fish,	therapy.	2004
			Rapid	contaminat	Strict health	
			breathing	ed water	surveillance	
			and restless		and	
			behaviour.		quarantine	
			Very high		of new fish.	
			mortality (80-		Developme	
			100%) in the		nt of	

event of	an	experiment	
outbreak.		al vaccines.	

Disease Reporting

Reporting fish diseases is an essential step in preventing the spread of infections and protecting the health of aquaculture stocks, biodiversity, and public health. Several international and national organizations regulate disease reporting to ensure effective surveillance.

Disease reporting is important for:

- Prevention and control of epidemics
- Protection of trade and exports
- Health surveillance and biosecurity in aquaculture
- Preservation of aquatic ecosystems and human health (WOAH, 2021)

Antimicrobial Resistance

Antimicrobial resistance (AMR) is a growing threat in aquaculture and aquatic ecosystems. The excessive or inappropriate use of antibiotics to treat bacterial diseases in fish promotes the development of resistant bacteria, compromising treatment effectiveness and posing risks to human and environmental health (WHO, 2021).

Although AMR develops naturally over time, antimicrobial misuse and overuse in humans and animals remains a major predisposing factor (Cabello, 2006; Chowdury et al., 2022). This inappropriate use is linked to lack of AMR and antimicrobial stewardship awareness and lack of diagnostic capacity (mostly in low- and middle-income countries (LMICs). This affects proper identification of causative pathogens in diseased animals and antimicrobial prescriptions (Henriksson et al., 2018; Adekanye et al., 2020).

Another contributing factor is the use of antibiotics as prophylactics in disease prevention – especially in intensive factory farm settings in aquaculture production (Cabello, 2006). Furthermore, intensive aquaculture, poor animal welfare practices, poor biosecurity can increase the risk of infection in fishes and consequently increase antibiotic use (Cabello, 2006).

Antibiotics are typically administered to fishes through feeds, in baths, or via injections (Chowdury et al., 2022). These methods can lead to the accumulation of antibiotic residues in the fishes and their aquatic ecosystems. If the proper withdrawal periods are not observed after the administration of antibiotics, consumers of such fishes will ingest antibiotic residues at suboptimal doses and this can facilitate AMR development and other health risks (Heuer et al., 2009; Sapkota et al., 2008). Furthermore, these residues and resistant bacteria can be transferred between the aquatic and terrestrial animals through the environment and waterways (Goldburg & Naylor, 2005; Naylor & Burke, 2005; Chowdury et al., 2022).

How does AMR spread from animals to humans?

Antimicrobial resistance (AMR) spreads from animals to humans primarily through food, the environment, and direct contact with contaminated animals or animal products. This phenomenon is particularly worrying in aquaculture, where excessive use of antibiotics promotes the emergence of resistant bacteria that can infect humans (Akinbowale *et al.*, 2006).

Impact of AMR

Antimicrobials are essential in intensive animal agriculture and aquaculture. Antibiotics including oxytetracycline, amoxicillin, and sulphadiazine trimethoprim are used extensively in aquaculture to treat or prevent fish diseases, thus maximising productivity (Chowdury et al., 2022). However, misuse and over-use

leads to AMR which causes treatment failure and affects aquaculture fish production and welfare (Schar et al., 2020).

Furthermore, antimicrobial misuse in aquaculture results in wide contamination of the environment with antimicrobial residues via water distribution systems (Schar et al., 2020). These residues can affect the environment's microbiame and, consequently, its regulatory and supporting activities in ecosystems (Sarmah et al., 2006; Larsson et al., 2018). Also, aquaculture systems with high antimicrobial use may serve as reservoirs for antimicrobial resistance genes, hence facilitating AMR development in animals and humans (Schar et al., 2020). We should also consider that authorised antibiotics for aquaculture species are scarce globally, hence, their efficacies should be maintained.

Combatting AMR

Combating antimicrobial resistance (AMR) is a global priority to protect human, animal, and environmental health. In aquaculture, where the excessive use of antibiotics promotes the emergence of resistant bacteria, it is essential to adopt sustainable strategies to limit this phenomenon.

The FAO action plan on AMR 2016–2020 recommends prudent use of antimicrobials and effective biosecurity practices (FAO). The main recommendations include:

- 1. Prudent and responsible use of antimicrobials to preserve their efficacies.
- 2. Provision of clean, safe, and disease-free aquatic systems to prevent infectious disease incidence and reduce antimicrobial use.
- 3. Proper routine monitoring of resistance during disease outbreaks.
- 4. Proper animal welfare standards should be adopted and maintained as they ensure better immune systems in animals, thus preventing infections, minimising outbreaks, and reducing antimicrobial use.

- 5. Routine removal of antibiotic residues in water via appropriate adsorption techniques, filtration, biological methods, sedimentation, and flocculation (Homem & Santos, 2011).
- 6. Vaccination of aquatic food animals for infectious disease prevention. For example, oral fish vaccines are effective against many aquatic diseases (Newaj-Fyzul & Austin, 2015).
- 7. Probiotics should also be considered in infection prevention and control. For example, probiotics are potential alternatives in controlling pathogens such as *Vibrio harveyi*, a major health threat in aquaculture (Chabrillon *et al.*, 2005).
- 8. Immunostimulants can also be considered for use. Example is β -1,3 glucans which is reportedly effective alternatives against various aquatic diseases like vibriosis, enteric redmouth, aeromonadiasis, pasteurellosis, and Hitra disease (Ngamkala et al., 2010).
- 9. Broad-host range phages can also be considered to treat bacterial infections. For example, due to the unavailability of appropriate vaccines, phages were used in salmonids to prevent rainbow trout fry syndrome (RTFS) caused by Flavobacterium psychrophilum (Castillo et al., 2012).
- 10. Traditional medicinal plants can also be explored as antimicrobial alternatives. Examples include seaweeds, extracts of mango, peppermint, turmeric, jasmine, and neem which are promising alternatives to treat bacterial infections by aeromonads and vibrios in aquatic animals (Newaj Fyzul & Austin, 2015).

The fight against antimicrobial resistance (AMR) in aquaculture relies on the responsible use of antibiotics, the development of sustainable alternatives, strict regulation, and increased awareness among industry stakeholders.

An integrated and coordinated approach involving producers, scientists, health authorities, and consumers is essential to reduce the spread of AMR and ensure sustainable aquaculture that respects public health.

Q&A Session

- What is antimicrobial resistance (AMR) and why is it a threat to public health and aquaculture?
- What are the main factors promoting the emergence of AMR in aquaculture?
- What types of microorganisms can develop resistance to antimicrobials?
- What are the main modes of transmission of AMR from fish to humans?

REFERENCES

- Abecasis, D., & Erzini, K. (2008). Site fidelity and movements of gilthead sea Coastal bream (Sparus aurata) in a coastal lagoon (Ria Formosa, Portugal). Estuarine, and Shelf Science, 79(4), 758–763. https://doi.org/10.1016/j.ecss.2008.06.019.
- Adekanye, U. O., Ekiri, A. B., Galipó, E., Muhammad, A. B., Mateus, A., La Ragione, R. M., ... & Cook, A. J. (2020). Knowledge, attitudes and practices of veterinarians towards antimicrobial resistance and stewardship in Nigeria. *Antibiotics*, 9(8), 453. https://doi.org/10.3390/antibiotics9080453.
- Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. *Journal of Applied Microbiology*, 100(5), 1103-1113.
- Animal Welfare Institute. (2018). The critical relationship between farm animal health and welfare. Available from: https://awionline.org/sites/default/files/uploads/documents/FA-AWI-Animal-Health Welfare-Report-04022018.pdf. Animals kept under Intensive Livestock Husbandry Systems. Her Majesty's Stationary Office. London
- Arechavala-Lopez, P., Caballero-Froilán, J. C., Jiménez-García, M., Capó, X., Tejada, S., Saraiva, J. L., Sureda, A., & Moranta, D. (2020). Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of *Sparus aurata*. *Scientific Reports*, 10(1), 11252. https://doi.org/10.1038/s41598-020-68306-6.
- Arechavala-Lopez, P., Cabrera-Álvarez, M. J., Maia, C. M., & Saraiva, J. L. (2021). Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Reviews in Aquaculture, 14(2). https://doi.org/10.1111/raq.12620.
- Arechavala-Lopez, P., Diaz-Gil, C., Saraiva, J.L., Moranta, D., Castanheira, M.F., Nuñez-Velazquez, S., Ledesma-Corvi, S., Mora-Ruiz, M.R., Grau, A. (2019). Effects of structural environmental enrichment on juvenile seabream (*Sparus aurata*) under feed deficit conditions. *Applied Animal Behaviour Science*, submitted.
- Ashley, P. J. (2007). Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science, 104(3-4), 199–235. DOI: 10.1016/j.applanim.2006.09.00.
- Austin, B., & Austin, D. A. (2016). Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer.
- Avnimelech, Y. (2012). Biofloc Technology: A Practical Guide Book. The World Aquaculture Society.
- Bakke, T. A., Harris, P. D., & Cable, J. (2007). The biology of Gyrodactylid monogeneans: the "Russian-doll killers". Advances in Parasitology, 64, 161-376.
- Barnes, A. C. (2011). Enteric redmouth disease (ERM) (Yersinia ruckeri). In Fish Diseases and Disorders (Vol. 3, pp. 484-511).
- Barreto, R. E., Carvalho, G. G. A., & Volpato, G. L. (2011). The aggressive behaviour of Nile tilapia introduced into novel environments with variation in

- enrichment. Zoology, 114(1), 53–57. https://doi.org/10.1016/j.zool.2010.09.001.
- Basson, L., & Van As, J. G. (2006). Chilodonellosis in freshwater fishes. *Journal of Fish Diseases*, 29(6), 425-431.
- Batzina, A., & Karakatsouli, N. (2012). The presence of substrate as a means of environmental enrichment in intensively reared gilthead seabream *Sparus aurata*: growth and behavioural effects. Aquaculture, 370–371, 54–60. https://doi.org/10.1016/J.AQUACULTURE.2012.10.005
- Batzina, A., & Karakatsouli, N. (2014). Is it the blue gravel substrate or only its blue colour that improves growth and reduces aggressive behaviour of gilthead seabream Sparus aurata? Aquacultural Engineering, 62:49-53.
- Batzina, A., Dalla, C., Papadopoulou-Daifoti, Z., & Karakatsouli, N. (2014a). Effects of environmental enrichment on growth, aggressive behaviour and brain monoamines of gilthead seabream *Sparus aurata* reared under different social conditions. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 169:25-32.
- Batzina, A., Dalla, C., Tsopelakos, A., Papadopoulou-Daifoti, Z., & Karakatsouli, N. (2014b). Environmental enrichment induces changes in brain monoamine levels in gilthead seabream *Sparus aurata*. *Physiology & Behaviour*, 130:85-90.
- Batzina, A., Kalogiannis, D., Dalla, C., Papadopoulou-Daifoti, Z., Chadio, S., & Karakatsouli, N. (2014c). Blue substrate modifies the time course of stress response in gilthead seabream Sparus aurata. Aquaculture, 420:247-253.
- Batzina, A., Sotirakoglou, K., & Karakatsouli, N. (2014d). The preference of 0+ and 2+ gilthead seabream Sparus aurata for coloured substrates or no-substrate. Applied *Animal Behaviour Science*, 151:110-116.
- Bera, K.K., Karmaka, S., Jana, P., Das, S. K. Purkait, S., Pal, S., & Haque, R. (2018). Biosecurity in aquaculture: An overview. Aqua international, 42.
- Bosakowski, T., & Wagner, E. J. (1995). Experimental use of cobble substrates in concrete raceways for improving fin condition of cutthroat (*Oncorhynchus clarki*) and rainbow trout (O. mykiss). Aquaculture, 130(2–3), 159–165.
- Boyd, C.E. (1998). Water quality for pond aquaculture. Research and Development Series No. 43. Auburn University.
- Boyd, C.E. et al. (2016). Water quality in aquaculture: managing high-density fish production.
- Boyd, C.E., & Tucker, C.S. (1998). Pond aquaculture water quality management. Springer.
- Boyd, C.E., Tucker, C.S., & Somridhivej, B. (2020). Aquaculture and the environment: Towards sustainability. *Annual Review of Environment and Resources*, 45(1), 229–252. DOI: 10.1146/annurev-environ-012420-05000.
- Braithwaite, V. A., Huntingford, F. A., & van den Bos, R. (2006). Variation in Emotion and Cognition Among Fishes. *Journal of Fish Biology*, 68(2), 489-493.
- Brambell, R. (1965). Report of the Technical Committee to Enquire into the Welfare of

- Brambell, R. (1965). Report of the Technical Committee to Enquire into the Welfare of Animals kept under Intensive Livestock Husbandry Systems. Her Majesty's Stationary Office. London.
- Brett, J. R., & Groves, T. D. D. (1979). Physiological energetics. Fish Physiology, 8, 279-352.
- Brockmark, S., Neregård, L., Bohlin, T., Björnsson, B.T., & Johnsson, J.I. (2007). Effects of rearing density and structural complexity on the pre- and post-release performance of Atlantic salmon. *Transactions of the American Fisheries Society*, 136(5), 1453–1462. https://doi.org/10.1577/t06-245.1.
- Broom, D.M. (2011). A history of animal welfare science. *ActaBiotheoretica*, 2/59, 121-137. DOI: 10.1007/s10441-011-9123-3.
- Brown, C., Laland, K., & Krause, J. (Eds.). (2011). Fish Cognition and Behaviour. Wiley-Blackwell.
- Buchmann, K., & Bresciani, J. (2006). *Ichthyophthirius multifiliis* (Fish "White Spot" Disease). *Journal of Fish Diseases*, 29(8), 561-574
- Bunting, S. W., & Pretty, J. (2007). Aquaculture development and global carbon budgets: Emissions, sequestration, and management options. *Science of the Total Environment*, 374(2-3), 313-332.
- Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environmental microbiology*, 8(7), 1137-1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x.
- Cascarano, M.C., Stavrakidis-Zachou, O., Mladineo, I., Thompson, K.D., Papandroulakis, N., & Katharios, P. (2021). Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. *Pathogens*, 10(9), 1205. https://doi.org/10.3390/pathogens10091205.
- Castillo, D., Higuera, G., Villa, M., Middelboe, M., Dalsgaard, I., Madsen, L., & Espejo, R. T. (2012). Diversity of *Flavobacterium psychrophilum* and the potential use of its phages for protection against bacterial cold water disease in salmonids. *Journal of Fish Diseases*, 35(3), 193-201. https://doi.org/10.1111/j.1365-2761.2011.01336.x.
- Chabrillón, M., Rico, R.M., Arijo, S., Diaz-Rosales, P., Balebona, M.C., & Moriñigo, M.A. (2005). Interactions of microorganisms isolated from gilthead sea bream, *Sparus aurata* L., on *Vibrio harveyi*, a pathogen of farmed Senegalese sole, *Solea senegalensis* (Kaup). *Journal of fish diseases*, 28(9), 531 537. https://doi.org/10.1111/j.1365-2761.2005.00657.x.
- Chinchar, V. G. (2002). Ranaviruses (family Iridoviridae): emerging cold-blooded killers. *Archives of Virology*, 147(3), 447-470.
- Chowdhury, S., Rheman, S., Debnath, N., Delamare-Deboutteville, J., Akhtar, Z., Ghosh, S., Parveen, S., Islam, K., Islam, M. A., Rashid, M. M., Khan, Z. H., Rahman, M., Chadag, V. M., & Chowdhury, F. (2022). Antibiotics usage practices in aquaculture in Bangladesh and their associated factors. One

- health (Amsterdam, Netherlands), 15, 100445. https://doi.org/10.1016/j.onehlt.2022.100445.
- Chulayo A.Y., Muchenje V. (2015). A balanced perspective on animal welfare for improved meat and meat products. S Afr J AnimSci2015; 45:452-69.
- Clottey J.A. (1985). Slaughter practices and techniques. In: Manual for the slaughter of small ruminants in developing countries. FAO Animal Production and Health Paper 49. Rome, Italy: FAO.
- Conte, F.S. (2004). Stress and the welfare of cultured fish. Applied Animal Behaviour Science, 86(3-4), 205–223.
- Czeczuga, B., & Muszyńska, E. (1999). Occurrence of *Branchiomyces* species in fish ponds with environmental conditions. *Acta Mycologica*, 34(2), 209-217.
- Declercq, A.M., Haesebrouck, F., Van den Broeck, W., Bossier, P., & Decostere, A. (2013). Columnaris disease in fish: a review with emphasis on bacterium-host interactions. *Veterinary Research*, 44(1), 27.
- Degen AA. (2007). Sheep and goat milk in pastoral societies. *Small RuminRes2007*; 68:7-19.
- Direction Générale de la Pêche et de l'Aquaculture (DGAP). (2023). Annuaire des statistiques des pêches en Tunisie. Direction Générale de la Pêche et de l'Aquaculture : 30p.
- Edwards, P. (2000). Aquaculture, poverty impacts, and livelihoods. Natural Resource Perspectives, 56.
- EFSA. (2017). Welfare of Farmed Fish: Common Practices during Transport and at Slaughter.

 https://ec.europa.eu/food/sites/food/files/animals/docs/aw_platform_2018
 - 0621_pre-06.pdf.
- El-Sayed, A. F. M. (2006). Tilapia Culture. CABI Publishing.
- Espinosa, M.A., García-Gallego, M., & Hidalgo, M.C. (2015). Biology and culture of European Seabass (Dicentrarchus labrax). CRC Press.
- FAO (Organisation des Nations Unies pour l'Alimentation et l'Agriculture). (2020). Guide sur l'aquaculture durable et le bien-être des poissons.
- FAO, rapports sur la pêche méditerranéenne et études tunisiennes.
- Fishcount. (2019). Numbers of farmed fish slaughtered each year | fishcount.org.uk. Fishcount.org.uk. http://fishcount.org.uk/fish-count-estimates-2/numbers-of-farmed-fish-slaughtered-each-year.
- Fraser, D. (2008). Understanding animal welfare: The science in its cultural context. Wiley-Blackwell.
- Goldburg, R., & Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3(1), 21-28. https://doi.org/10.1890/1540-9295(2005)003%5b0021:FSFAFF%5d2.0.CO;2.
- Grandin T. (2018). Welfare problems in cattle, pigs, and sheep that persist even though scientific research clearly shows how to prevent them. *Animals* 2018;8:124. https://doi.org/10.3390/ani8070124.

- Gray S, Sundal M, Wiebusch B, Little M.A., Leslie P.W., Pike I.L. (2003). Cattle raiding, cultural survival, and adaptability of East African pastoralists. CurrAnthropol 44(5 suppl.);2003:S3-30. https://doi.org/10.1086/377669.
- Haenen, O.L.M., Way, K., Bergmann, S.M., & Ariel, E. (2004). The emergence of koi herpesvirus (KHV) and its significance to European aquaculture. Bulletin of the European Association of Fish Pathologists, 24(6), 293-307.
- Hambrey, J., & Evans, S. (2016). Aquaculture and community development. World Aquaculture Society Reports.
- Harmon, T. S. (2009). Methods for reducing stressors and maintaining fish health during live fish transport. *North American Journal of Aquaculture*, 71 (3), 262-277.
- Henriksson, P. J., Rico, A., Troell, M., Klinger, D. H., Buschmann, A. H., Saksida, S., ... & Zhang, W. (2018). Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustainability Science, 13, 1105-1120. https://doi.org/10.1007/s11625-017-0511-8.
- Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Insect meal as an alternative source of protein in aquaculture diets: A review. Aquaculture, 437, 1-14.
- Herrero M, Grace D, Njuki J, et al. (2013). The roles of livestock in developing countries.

 Animal 2013;7(Suppl 1):3-18. https://doi.org/10.1017/S1751731112001954.
- Heuer, O.E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F.J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. *Clinical Infectious Diseases*, 49(8), 1248 1253. https://doi.org/10.1007/s11625-017-0511-8.
- Hoffman I. (2010). Climate change and the characterisation, breeding and conservation of animal genetic resources. *Anim Genet* 2010;41:32-46. https://doi.org/10.1111/j.1365-2052.2010.02043.x.
- Holmyard, N. (2017). Fish producers benefit from humane slaughter techniques Responsible seafood advocate. Global Seafood Alliance. https://www.globalseafood.org/advocate/fish-producers-benefit humane-slaughter-techniques/.
- Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices—a review. *Journal of Environmental Management*, 92(10), 2304-2347. https://doi.org/10.1016/j.jenvman.2011.05.023.
- https://aquaculturefrance.com/fr/accueil/467-oxyguard-pacific.
- https://asc-aqua.org/blog/explained-what-is-ras-aquaculture/
- https://doi.org/10.1016/j.livsci.2011.07.014.
- https://gipp.tn/fr/fili%C3%A8res/daurade-et-loup-daquaculture
- https://inspection.canada.ca/fr/exigences-documents-dorientation-relativesc/produits-viande-animaux-alimentation-hu/methodes-dabattagesurveillance.

- https://chaire-bea.vetagro-sup.fr/pourquoi-et-comment-enrichir-lenvironnement-des-animaux-delevage
- https://macommande.lemonde.fr/account/create/ESSADIMENS1299PRIO/ESS36 5J14199PRLVT1FPRIO?marketing=241RESSCMP.
- https://welfarm.fr/nos-champs-d-action/labattage-des-animaux-delevage/
- https://www.agrociwf.fr/media/7441968/ciwf-bar-et-daurade-ameliorer-labattage-des-bars-et-daurade.pdf
- https://www.aguaportail.com/dictionnaire/definition/6595/raceway.
- https://www.ctagua.tn/2021/04/07/la-peche-en-tunisie/
- https://www.fao.org/fishery/docs/CDrom/aquaculture.
- https://www.l214.com/animaux/abattage/abattage-sans-etourdissement
- https://www.linde.ch/shop/fr/ch-ig/oxygenation-en-aquaculture?
- https://www.publications.gov.on.ca/store/20170501121/Free_Download_Files/30 1648.pdf
- https://www.wcl.org.uk/duplicate-of-moving-to-the-five-domains-model-forassessing-animal-welfare.asp
- Humane Slaughter Association. (2004). Humane harvesting of farmed fish. Guidance notes No. 5. Humane Slaughter Association, Wheathampstead, Hertfordshire.

 1-23. https://www.hsa.org.uk/downloads/publications/harvestingfishdownloads-
 - updated-with-2016-logo.pdf.
- Huntingford, F.A., Adams, C., & Kadri, S. (2006). Behavioural Responses to Stress in Fish: A Review. *Journal of Fish Biology*.
- Huntingford, F.A., Adams, C., Braithwaite, V.A., et al. (2006). Current issues in fish welfare. Journal of Fish Biology, 68(2), 332–372. DOI: 10.1111/j.0022-1112.2006.001046.x.
- Jobling, M., & Peruzzi, S. (2010). Seabreams and Porgies (Family: Sparidae). In N.R. Le Francois, M. Jobling, C. Carter, & P. Blie (Eds.), Finfish Aquaculture Diversification(pp.361-373.).CABI publishing. Nathalie+R.+Le+Francois,+Malcolm+Jobling,+Chris+C.
- Kaushik, S. J., & Troell, M. (2010). Feeding efficiency and sustainability in aquaculture. *Reviews in Aquaculture*, 2(3), 117-124.
- Kocan, R.M., Hershberger, P.K., & Winton, J.R. (2004). Ichthyophoniasis: an emerging disease of Chinook salmon in the Pacific Northwest. *Journal of Aquatic Animal Health*, 16(2), 58-72.
- Larsson, D.J., Andremont, A., Bengtsson-Palme, J., Brandt, K.K., de Roda Husman, A.M., Fagerstedt, P., ... & Wernersson, A.S. (2018). Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. *Environment International*, 117, 132-138. https://doi.org/10.1016/j.envint.2018.04.041.

- Leone, E.H., & Estévez, I. (2008). Economic and Welfare Benefits of Environmental Enrichment for Broiler Breeders. *Poultry Science*, 87(1), 14–21. https://doi.org/10.3382/ps.2007-00154.
- Lester, R. J. G., & Hayward, C. J. (2006). Phylum Arthropoda. In Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections.
- Lom, J., & Dyková, I. (1992). Protozoan parasites of fishes. *Elsevier Science Publishers B.V.*
- Lom, J., & Dyková, I. (2006). Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitologica, 53(1), 1-36.
- Magariños, B., Romalde, J.L., & Toranzo, A.E. (1996). Pathogenicity and antigenic characterisation of *Pasteurella piscicida* strains isolated from fish. *Applied and Environmental Microbiology*, 62(11), 4074-4078. Mathilde Escudero. (2018). Bien-être des poissons en aquaculture. Médecine vétérinaire et santé animale. ffdumas-04885683f.
- Mellor, D.J.., & Beausoleil, N.J. (2015). Extending the 'Five Domains' model for animal welfare assessment to incorporate positive welfare states. *Animal Welfare*, 24(3), 241-253.
- Merrifield, D.L., Dimitroglou, A., Foey, A., Davies, S.J., Baker, R.T.M., Bøgwald, J., ... & Ringø, E. (2010). The current status and future focus of probiotic and prebiotic applications for salmonids. *Aquaculture*, 302(1-2), 1-18.
- Muchenje V, Mukumbo F.E., Njisane Y.Z. (2018). Meat in a sustainable food system. S Afr J AnimSci2018; 48:818-28. http://dx.doi.org/10.4314/sajas.v48i5.3.
- Mukaila, R., Ukwuaba, I.C., & Umaru, I I. (2023). Economic impact of disease on small-scale catfish farms in Nigeria. Aquaculture, 739773. https://doi.org/10.1016/j.aquaculture.2023.739773.
- Munday, B.L., Kwang, J., & Moody, N. (2002). Betanodavirus infections of marine fish. Annual Review of Fish Diseases, 12, 41-64.
- Näslund, J., & Johnson, J.I. (2014). Environmental enrichment for fish in captive environments: effects of physical structures and substrates. *Fish and Fisheries*, 17(1), 1–30. https://doi.org/10.1111/faf.12088.
- Naylor, R., & Burke, M. (2005). Aquaculture and ocean resources: Raising Tigers of the sea. Annual Review of Environment and Resources, 30(1), 185–218. https://doi.org/10.1146/annurev.energy.30.081804.121034.
- Ndou S.P., Muchenje V, Chimonyo.M. (2011). Assessment and implications of animal welfare in beef production systems in developing countries. Afr J Biotechnol 2011;10:1049-64.
- Neto, J.F. & Percilia, C.G. (2020). Environmental enrichment techniques and tryptophan supplementation used to improve the quality of life and animal welfare of Nile tilapia. Aquaculture Reports, 17: 100354.
- Newaj-Fyzul, A., & Austin, B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. *Journal of Fish Diseases*, 38(11), 937-955. https://doi.org/10.1111/jfd.12313.

- Ngamkala, S., Futami, K., Endo, M., Maita, M., & Katagiri, T. (2010). Immunological effects of glucan and *Lactobacillus rhamnosus GG*, a probiotic bacterium, on Nile tilapia *Oreochromis niloticus* intestine with oral Aeromonas challenges. *Fisheries Science*, 76, 833-840. https://doi.org/10.1007/s12562-010-0280-0.
- Nicks, B., & Vandenheede, M. (2014). Animal health and welfare: equivalent or complementary?. Revue scientifique et technique (International Office of Epizootics), 33(1), 97–96. https://doi.org/10.20506/rst.33.1.2261. nie.com
- Njisane Y.Z., Muchenje V. (2017). Farm to abattoir conditions, animal factors and their subsequent effects on cattle behavioural responses and beef quality—a review. Asian-Australas J AnimSci2017;30:755-64. https://doi.org/10.5713/ajas.16.0037.
- Njisane Y.Z., Mukumbo F.E., and Muchenje V. (2020). An outlook on livestock welfare conditions in African communities A review. Asian-Australas J AnimSci Vol. 33, No. 6:867-878 June 2020https://doi.org/10.5713/ajas.19.0282pISSN 1011-2367 eISSN 1976-5517.
- NRC (2011). Nutrient requirements of fish and shrimp. National Research Council. Nyika A. (2009). Animal research ethics in Africa: An overview. Acta Trop 2009;112 (Suppl 1):S48-52. https://doi.org/10.1016/j.actatropica.2009.07.021.
- Papoutsoglou, S.E., Karakatsouli, N., Batzina, A., Papoutsoglou, E.S., & Tsopelakos, A. (2008). Effect of music stimulus on gilthead seabream *Sparus aurata* physiology under different light intensity in a re-circulating water system. *Journal of Fish Biology*, 73(4), 980–1004. https://doi.org/10.1111/j.1095-8649.2008.02001.x.
- Papoutsoglou, Sofronios E., Karakatsouli, N., Skouradakis, C., Papoutsoglou, E.S., Batzina, A., Leondaritis, G., & Sakellaridis, N. (2013). Effect of musical stimuli and white noise on rainbow trout (Oncorhynchus mykiss) growth and physiology in recirculating water conditions. Aquacultural Engineering, 55, 16–22. https://doi.org/10.1016/j.aquaeng.2013.01.003.
- Poli, B. M., Parisi, G., Scappini, F., & Zampacavallo, G. (2005). Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquaculture International, 13(1-2), 29–49. https://doi.org/10.1007/s10499-004-9035-1
- Poynton, S.L., & Morrison, C.M. (1990). Morphology of *Spironucleus* species (Diplomonadida, Hexamitidae) from fish. Canadian Journal of Zoology, 68(4), 667-685.
- Rakocy, J.E., Masser, M.P., & Losordo, T.M. (2006). Recirculating aquaculture tank production systems: Aquaponics Integrating fish and plant culture. Southern Regional Aquaculture Centre Publication, 454.
- Ren, Y., Xiong, M., Yu, J., Li, W., Li, B., Liu, J., & Zhang, T. (2019). Effects of artificial submersed vegetation on consumption and growth of mandarin fish *Siniperca chuatsi* (Basilewsky) foraging on live prey. *Journal of Freshwater Ecology*, 34:433–444.

- Roberts, L.J., Taylor, J., & de Leaniz, C.G. (2011). Environmental enrichment reduces maladaptive risk-taking behaviour in salmon reared for conservation. *Biological Conservation*, 144: 1972-1979.
- Roberts, R.J. (2012). Fish Pathology. Wiley-Blackwell.
- Ross, L.G., & Ross, B. (2008). Anaesthetic and sedative techniques for aquatic animals. Blackwell Publishing.
- RSPCA (Royal Society for the Prevention of Cruelty to Animals). Guide sur les normes pour le bien-être des poissons. Disponible sur : https://www.rspca.org.uk/.
- Sabri, B.D.M., Elnwishy, N., & Nwonwu, F. (2012). Effect of environmental colour on the behavioural and physiological response of Nile tilapia, Oreochromis Niloticuss. Global Journal of Science Frontier Research, 12(4), 11–20.
- Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: current knowledge and future priorities. *Environment International*, 34(8), 1215-1226. https://doi.org/10.1016/j.envint.2008.04.009.
- Sarmah, A.K., Meyer, M.T., & Boxall, A.B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. *Chemosphere*, 65(5), 725-759. https://doi.org/10.1016/j.chemosphere.2006.03.026
- Schar, D., Klein, E.Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T.P. (2020). Global trends in antimicrobial use in aquaculture. *Scientific Reports*, 10(1), 21878. https://doi.org/10.1038/s41598-02078849-3.
- Scholtz M.M., McManus C, Okeyo A.M., Theunissen A. (2011). Opportunities for beef production in developing countries of the southern hemisphere. *LivestSci2011*;142:195-202.
- Soares, M.C., Oliveira, R.F., Ros, A.F.H., Grutter, A.S., & Bshary, R. (2011). Tactile stimulation lowers stress in fish. *Nature Communications*, 2(1), 1–5. https://doi.org/10.1038/ncomms1547.
- Subasinghe, R., et al. (2019). Health management in aquaculture: Practices and challenges.
- Subasinghe, R., Soto, D., & Jia, J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1(1), 2-9. https://doi.org/10.1111/j.1753-5131.2008.01002.x.
- Tacon, A.G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4), 146-158.
- Tacon, A.G.J., & Metian, M. (2015). Feed Management and Nutrition in Aquaculture. Springer.
- Timmons, M.B., & Ebeling, J.M. (2010). Recirculating aquaculture systems. Cayuga Aqua Ventures.
- Toranzo, A.E., Magariños, B., & Romalde, J.L. (2005). A review of the main bacterial fish diseases in mariculture systems. *Aquaculture*, 246(1-4), 37-61.

- Torrezani, C.S., Pinho-Neto, C.F., Miyai, C.A., Fabio, & Barreto, R.E. (2013). Structural enrichment reduces aggression. *Tilapia rendalli*. 46(3), 183–190. https://doi.org/10.1080/10236244.2013.805053
- WOAH (2019). Septicémie hémorragique virale, Manuel de l'OIE.
- WOAH (2021). Animal Welfare and International Standards. Organisation Mondiale de la Santé Animale.
- Wolf, K. (1988). Fish viruses and fish viral diseases. Cornell University Press.
- Woo, P.T.K. (2006). Fish diseases and disorders, Volume 1: Protozoan and Metazoan Infections. CABI Publishing.
- Woodward, M., Winder, L., & Watt, P. (2019). Enrichment increases aggression in zebrafish. Fishes, 4(1), 22. https://doi.org/10.3390/fishes4010022
- World Health Organisation (WHO). (2021). Antimicrobial resistance [Fact sheet]. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.

www.oie.int

www.tunisie-aquapo

- Yanong, R. P., & Erlacher-Reid, C. (2012). Biosecurity in aquaculture, part 1: An overview. SRAC publication, 4707, 522. http://fisheries.tamu.edu/files/2013/09/SRAC-Publication-No.-4707-Biosecurity-in Aquaculture-Part-1-An-Overview.pdf.
- Zhang, Z., Bai, Q., Xu, X., Guo, H., & Zhang, X. (2020). Effects of environmental enrichment on the welfare of juvenile black rockfish Sebastes schlegelii: Growth, behaviour and physiology. Aquaculture, 518, 734782.https://doi.org/10.1016/j.aquaculture.2019.734782.

- in AFIWELProgram
- @afiwelprogram
- f Africa Fish & Aquaculture Welfare
- afiwelprogram@onehealthdev.org